

UPDATED TURBINE FEASIBILITY STUDY CAMELOT DRIVE WIND PROJECT PLYMOUTH, MA

Prepared for:

Mr. Joseph Balboni The Balboni Companies Camelot Industrial Park Plymouth, MA 02360

Prepared by:

Atlantic Design Engineers, LLC P.O. Box 1051 Sandwich, MA 02563

March 19, 2009

ADE Project #2572

TABLE OF CONTENTS

- I. Background
- **II.** Turbine Evaluations
- III. Permitting
- IV. Findings
- V. Recommendations

FIGURES

- 1. Aerial Plan
- **2.** Alternate Turbine Location Plan

APPENDICES

APPENDIX A	Financial Summaries
APPENDIX B	Energy Models, Cost Analysis, Greenhouse Gas Emissions
APPENDIX C	Turbine Specifications and Equipment Data
APPENDIX D	Final FAA and MAC Determinations
APPENDIX E	Funding, Incentives, and Financial Assistance Information
APPENDIX F	Sources

THE CAMELOT DRIVE WIND PROJECT UPDATED TURBINE FEASIBILITY/SITING EVALUATION

March 19, 2009

I. BACKGROUND

In July, 2008, Atlantic Design Engineers, LLC (Atlantic) was retained by The Balboni Companies (the client) to complete an initial wind resource evaluation and siting feasibility reviews at two potential wind turbine site locations in the Camelot Industrial Park in Plymouth, Massachusetts. One of these locations, Site I – 125 Camelot Drive, is the subject of this updated report.

Atlantic completed a "Preliminary Findings Turbine Feasibility/Siting Evaluation" dated July 10, 2008. The results of this evaluation indicated that the wind regime at the 125 Camelot Drive property met commercial grade operating requirements for a 389 foot (80 meter hub height) AAER 1,500 kilowatt wind turbine and initial financial reviews indicated the viability of a commercial turbine installation.

Based upon the favorable results of the July 2008 study, the client pursued and obtained a Special Permit from the Plymouth Zoning Board of Appeals for an 80 meter turbine in March 2009.

The purpose of this report is to analyze three new turbine alternatives for the site and to update/refine the associated construction cost and financial models utilizing current energy market values and considering recent revisions to the state net-metering laws.

II. TURBINE EVALUATIONS

A. <u>Turbine Characteristics</u>

The table below provides relevant dimensional data for the potential wind turbines that Atlantic reviewed for installation at the site. Each turbine was selected as a representative of the moderate wind regime class of turbines available from seasoned turbine vendors such as Fuhrlander or General Electric. The 80 meter AAER A-1500 turbine was originally presented as the proposed turbine in information submitted to the Town of Plymouth during the local permitting process. However, the Special Permit granted by the Town allowed for flexibility in the make/model of the actual turbine to be constructed, as long as the final turbine chosen was presented to them for consistency with the permit.

The three additional turbines selected for analysis, including a newer AAER model, represent newer, more efficient machines that are anticipated to provide more energy production on the site.

MODEL	Nameplate Capacity (kWh)	Overall Height (feet)	Hub Height (feet)	Rotor Diameter (feet)	Blade Sweep Clearance From Grade (feet)
AAER A-1500	1,500	389	263	253	136
AAER A-1650	1,650	394	263	263	131
Vestas V82	1,650	397	263	269	128
Gamesa G80	2,000	387	256	263	124

Table 1: Turbine Characteristics

Note that several of the turbines chosen are slightly larger in height than the 389' overall height presented to the town during the local permitting process. In order to site these turbines on the property, the tower location would need to be revised to comply with property line setback requirements of the bylaw and restrictions would need to be placed on abutting Balboni, LLC properties. Refer to Figure 1 "Alternate Turbine Location Plan" provided in the Appendices.

B. Wind Resource Review

The wind resource review, completed in the July 2008 report using the New England Wind Map developed from AWS Truewind wind data and meteorological tower data from the Plymouth County Property northwest of the proposed turbine site, was utilized for this updated report. This wind resource data is presently being reviewed by a certified meteorologist to both confirm that the data from the Plymouth County Met tower is suitable for use on the Camelot Drive site and the wind speeds/capacity factors for the selected turbine are suitable as well. A wind resource review by a certified professional meteorologist is necessary to ensure project financing and wind turbine suitability. The results of the wind resource review for each of the selected turbines is provided in Table 2.

Table 2Camelot Drive, Plymouth, MAEstimated Wind Energy Production

Turbine Model	Turbine Hub Height (m)	Average Annual Wind Speed (meters/second)	Projected Capacity Factor* %	Estimated Energy Delivered
AAER A-1500	80	6.7	30%	3,998,00
AAER A-1650	80	6.7	32%	4,651,00
Vestas V82	80	6.7	31%	4,532,00
Gamesa G80	78	6.7	26%	4,604,00

*The capacity factors presented above were generated using the specifications for the AAER-1500-77, AAER A-1650-80, Vestas V82, and the Gamesa G80 model turbines which are representative of a turbine that is, in our opinion, suitable for

The Camelot Drive Wind Project Updated Turbine Feasibility/Siting Evaluation March 19, 2009 – Page 3

the Camelot Drive site. Turbine availability, costs, and delivery timeline are subject to change, thus, these aspects should be continually evaluated throughout the project lifespan.

C. Capital Construction Costs

For purposes of this assessment, the following costs have been projected for the installation of the AAER A-1500-77, AAER A-1650-80, Vestas V82, and Gamesa G80 wind turbines. These costs are based upon discussions with turbine salespersons, construction companies, and our current understanding of permitting/engineering design costs associated with approval processes with the Town of Plymouth.

Vendor	Preliminary Cost Estimate (US Dollars)	Rated Machine Capacity (kW)	Cost/kW of Rated Capacity
AAER A-1500	\$4,219,072.00	1,500	\$2,813.00
AAER A-1650	\$4,479,904.00	1,650	\$2,715.00
Vestas V82	\$4,916,340.00	1,650	\$2,980.00
Gamesa G80	\$5,326,464.00	2,000	\$2,663.00

Table 3: Projected Costs Summary

Please note these estimates are preliminary based upon a generic unit cost estimate with adjustments for anticipated site specific development costs (access road, wetland impacts, etc). A key next step will be to prepare site specific cost estimates for turbine installations based on unit pricing and construction rates/ timelines projected by the client.

For baseline comparison, some of the costs for completed/proposed turbine projects in Massachusetts are as follows:

Table 4: Existing/Proposed Wind Turbines

Year Built	Site/Location	Wind Turbine Capacity	Turbine Height (M)	Initial Construction Cost	Cost/kW of Capacity
2005	Hull/Landfill	1-1.8 MW	70M	\$3.0 M	\$1,667
2006	Bourne, MA	1-660 kW	50M	\$1.4 M	\$2,121
2007	Jiminy Peak	1-1.5 MW	78M	\$4.0 M	\$2,667

a). Existing Turbines:

Year Built/ Planned	Site/Location	Wind Turbine Capacity	Turbine Height (M)	Estimated Construction Cost	Cost/kWh of Capacity
2009	Fairhaven/Wastewater Treatment Plant	2-1.65 MW	80M	\$8.30 M	\$2,520
2009	Cape Cod Community College	1-600 kW	50M	\$2.2 M	\$3,667
2009	Princeton	2-1.5 MW	70M	\$8.0 M	\$2,670
2009	Falmouth Wastewater Treatment Plant	1-1.65 MW	80M	\$4.3 M	\$2,606

b). Proposed/Pending Turbines:

D. Financial Analysis

RET Screen Energy Models for the four chosen turbines were refined and updated to reflect more current renewable energy market conditions and to incorporate recent revisions to the net-metering laws. The RET Screen models are provided in Appendix B and summarized in Appendix A.

Various incentive programs are in place to assist in funding a wind turbine project. The following potentially available incentives were used in the RET Screen modeling for this project:

- *Production Tax Credits (PTC:* Offered by the U.S. government for renewable energy facilities that pay taxes and sell the electricity generated to outside sources. The current rate for a PTC, as applied to wind energy is \$0.02 per kWh. The availability of a PTC has been extended to December 31, 2012. To be eligible, the commissioning date for a facility must be before this deadline.
- *Renewable Energy Credits/Certificates (REC's):* Purchased from renewable energy producers by various power organizations. Rates vary between three cents (3¢) and six cents (6¢) per kilowatt hour. Contract durations may range from 1-10 years and they may be renewable.
- *Net Metering:* Recently enacted legislation (Green Communities Act of 2000) that allows generators of renewable energy to sell energy generated at a rate almost equal to that of the average retail cost of electricity for a given market. For the purposes of this assessment, a net metering value of 18 cents per kilowatt hour has been used as the "avoided cost of energy" in our financial modeling. This assigned value is used as the selling price of the electricity generated from a wind energy net metering facility.
- *Forward Capacity Market (FCM):* Ensures the reliable delivery of electricity during periods of high and low demand by offering incentives to expand generating capacity. Energy production facilities installed

may receive Forward Capacity Payments (FCP) from Independent Service Operators of New England (ISO New England), determined by the generating (name plate) capacity of a given facility. These payments provide capital for the purposes of investing in generating capacity during generation shortages. This ensures that excess generating capacity is available when demand increases. These payments are made for a total of 10 years.

There are also several tax incentive programs potentially available for wind turbine projects as follows:

- *Massachusetts Renewable Energy Property Tax Exemption:* For any wind energy facility that uses the energy generated on site. This tax exemption applies only to the increase in property value related to installing a turbine, not total property tax. This exemption can be claimed for a total of 20 years.
- *The Modified Accelerated Cost Recovery System and Bonus Depreciation:* A federal program designed to give a return on an initial investment, related to renewable energy facilities. A business may recover investments through depreciation deductions, offered as 50% of the depreciation value of the property for 2008-2009. This incentive is in place to provide additional funding to expedite the construction process.

Our RET Screen models did not consider the accelerated depreciations and the associated after tax rate of returns, but it is recommended that the they be evaluated by Tom Condon and the financial projections adjusted accordingly.

The table below presents a complete financial summary of all turbines evaluated.

Vendor	Energy Delivered (kWh)	Annual Energy Revenue	Annual Life Cycle Savings	Raw Production Cost per kWh	Net Cost per kWh (With FCP + RECs)
AAER A-1500	3,998,000	\$719,728	\$568,351	\$0.0692	\$0.0384
AAER A-1650	4,651,000	\$837,233	\$695,424	\$0.0633	\$0.0328
Vestas V82	4,532,000	\$815,740	\$630,896	\$0.0712	\$0.0403
Gamesa G80	4,604,000	\$828,669	\$609,721	\$0.0769	\$0.0448

Table 5: Financial SummaryCamelot Drive Wind Turbine

III. PERMITTING

The following permitting activities have been completed to date:

a) Town of Plymouth Zoning Board of Appeals – Special Permit for Wind Energy Facility

As part of this permit process, a complete set of site plans, balloon test and photosimulations, acoustic noise analysis, environmental impact statement and shadow flicker analysis were completed and reviewed by the Town. The Planning Board issued a favorable recommendation and the ZBA voted unanimously to grant the Special Permit on 3/4/09.

b) FAA - A Determination of No Hazard to Air Navigation was issued by the FAA on 10/16/08 for a turbine height of 394 feet above ground level (471 feet above mean sea level).

Note that if a turbine greater than 394' above ground level is ultimately chosen, a new FAA application/approval will be needed.

c) MAC - A final determination that the project does not violate MAC Airspace Laws or Regulations was issued on 9/2/08.

Note that if a turbine greater than 394' above ground level is ultimately chosen, a new MAC application/approval will be needed.

d) Town of Plymouth Airport Commission – Gave a unanimous vote of support for the Camelot Drive wind project on 10/9/08.

Remaining permitting issues that are anticipated at this time are as follows:

a) Town of Plymouth Conservation Commission/Order of Conditions A Notice of Intent filing (prepared by others) is pending for work proposed within 100 feet of the bordering vegetated wetland on the site.

Note that if the final location of the chosen turbine is different from the location approved by the Conservation Commission, an amended Order of Conditions may be needed.

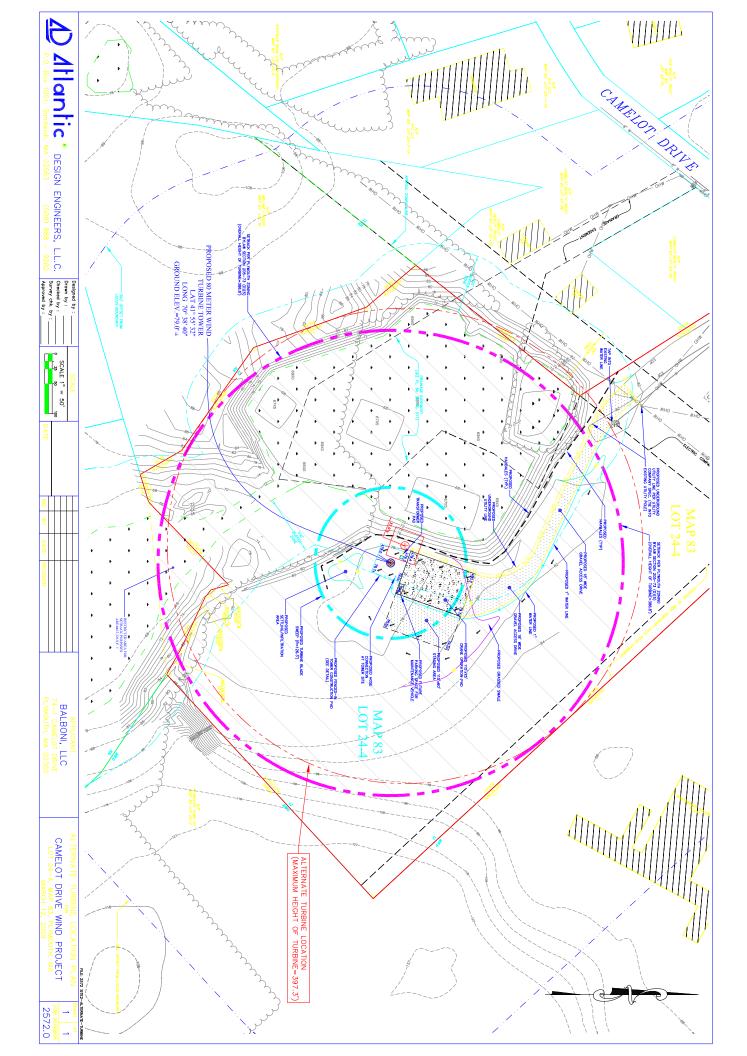
- b) Town of Plymouth Building Inspector Zoning Permit A Zoning Permit Application, previously denied due to the need for a Special Permit, will need to be re-filed with the Building Inspector for zoning approval.
- c) Town of Plymouth Building Inspector Building Permit Upon receipt of an approved Zoning Permit, a Building Permit application will need to be filed along with final construction plans with the building inspector.

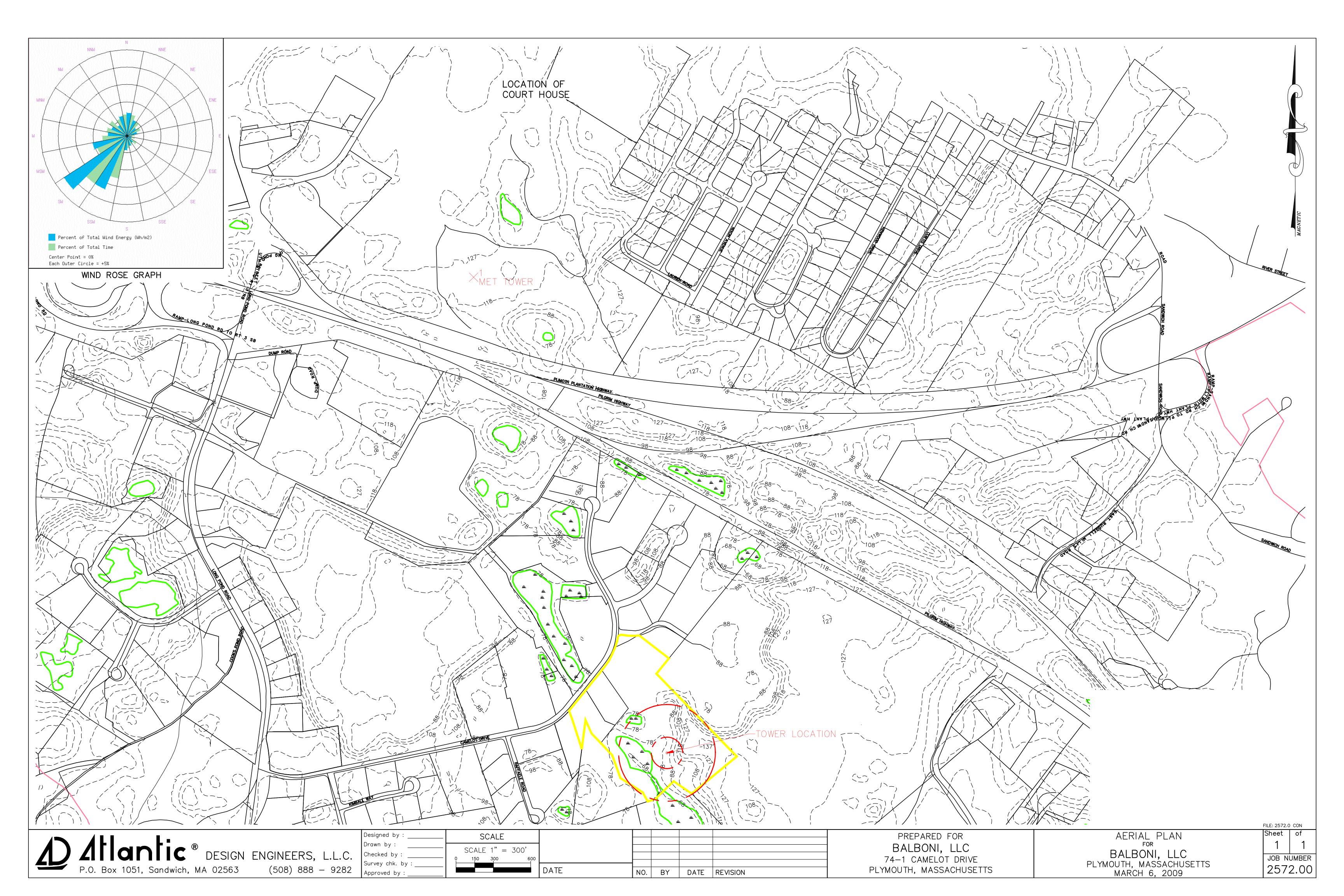
d) EPA – NPDES General Permit for Stormwater Discharges from Construction Activities (aka Construction General Permit) An NPDES Construction General Permit (CGP) will be required if the construction site disturbs greater than one acre of land. The CGP requires preparation of a Stormwater Prevention Plan (SWPPP) and filing of a Notice of Intent with the EPA 30 days prior to construction.

e) Utility Connection Permits – Pending, to be completed by Glynn Electric.

f) Town of Plymouth Zoning Board of Appeals

The final chosen turbine specifications will need to be presented informally to the ZBA to determine compliance with the conditions of the Special Permit.


Note that if a turbine with a larger height and revised location on the site is ultimately chosen, the ZBA may consider re-opening the Special Permit process.


IV. FINDINGS

- **1.** In our opinion, adequate wind resources exist for a commercial grade wind turbine proposed at the Camelot Drive turbine site.
- 2. The Camelot Drive site could, in our opinion, accommodate a commercial grade (scale) turbine slightly larger than the originally proposed 80 meter AAER A-1500, thereby potentially increasing the energy production on the site. Additional permitting with Town and State agencies may be needed.
- **3.** The completed wind energy modeling, cost analysis and financial summaries resulted in favorable economics for all four turbines evaluated. The AAER A-1650 appears to provide the most favorable financial benefits.

V. RECOMMENDATIONS

- **1.** Meet to discuss/review the results of this updated analysis, particularly the options for a larger more efficient turbine on the site.
- 2. Meet with the project attorney to discuss the permitting modifications associated with a larger turbine on the site.
- **3.** Continue to pursue electrical utility connection permits.
- **4.** Obtain accountant recommendations regarding tax incentive programs for turbine funding and revise the RET Screen financial models accordingly.
- 5. Identify the framework for obtaining project funding and establish a project schedule for turbine procurement and project construction.
- 6. Identify the preferred Power Purchase Agreements with receiving electrical customers on the NStar utility grid, including the Town of Plymouth.

APPENDIX A Financial Summaries

125	Camelo	t Drive (Comprehe	ensive l	Financial	Summa	a <mark>ry: 20</mark> %	6 Down		
Turbine Model	Turbine Hub Height (Meters)	Annual Renewable Energy Delivered (kWh)	Capital Construction Cost	Debt Service	Operation and Maintenance Costs	FCM, PTC + REC Earnings	Annual Energy Revenue	Annual Life Cycle Savings	Average Raw Production Cost per kWh	Average Net Cost per kWh With FCP + RECs)
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
AAER A-1500	80	3,998,000	\$4,219,072	\$394,330	\$40,241	\$308,768	\$719,728	\$568,351	\$0.0692	\$0.0384
AAER A-1650	80	4,651,000	\$4,479,904	\$418,708	\$42,998	\$354,528	\$837,233	\$695,424	\$0.0633	\$0.0328
Vestas V-82	80	4,532,000	\$4,916,340	\$459,499	\$46,762	\$349,958	\$815,740	\$630,896	\$0.0712	\$0.0403
Gamesa G80	78	4,604,000	\$5,326,464	\$497,831	\$55,125	\$369,316	\$828,669	\$609,721	\$0.0769	\$0.0448

(5) = RE Production Credit Income + GHG Reduction Income

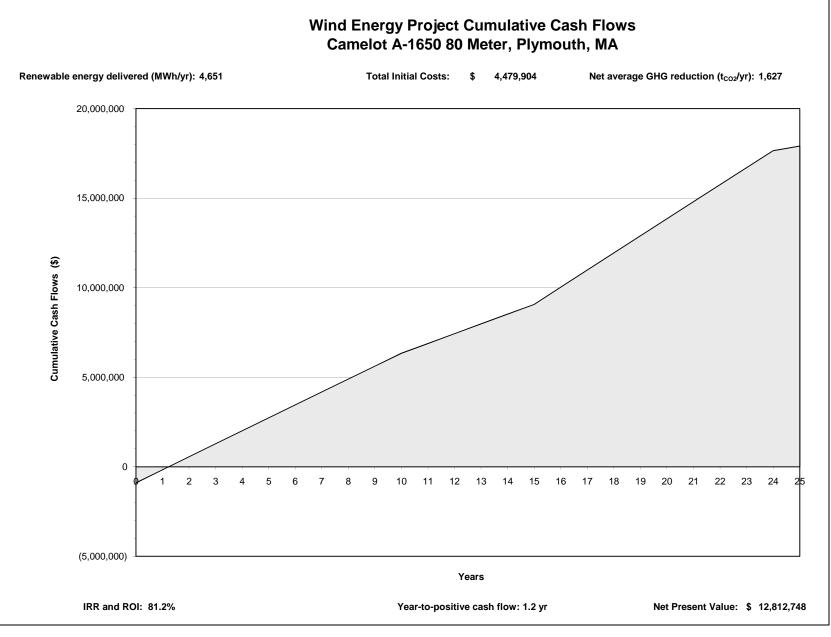
(6) = Energy Delivered * (\$/ kWh)

 $(8) = [{(3)+(4)}*15 \text{ years}]+[10 \text{ years}*(4)]/[(1)*25]$

(9) = [{(3)+(4)}*15 years]+[10 years*(4)] - [10 years*(5)] / [(1)*25 years]

AAER A-1650 80 Meter

The following financial summaries have been calculated using the following:


- 20% down
- 8% overall interest rate
- 15 Year payback
- Avoided cost of energy is assumed to be a net metering value of 18 cents per kilowatt hour
- ISO New England Forward Capacity payments are included under the title of "Renewable Energy Production Credit" on the RetScreen® Financial Summary page. The rate for a 1,650 kilowatt nameplate capacity turbine producing 4,651,000 kilowatt hours annually is assumed to be 1.5 cents per kilowatt hour using a rate of \$3.60 per month for a duration of 10 years.
- Renewable Energy Credits are included under title of "GHG Emission Reduction Credit" on the RetScreen® Financial Summary page. The average rate is assumed to be 4.0 cents per kilowatt hour or \$115 per ton of CO₂ removed from the atmosphere. Contract lengths vary from 1-10 years. For this financial model, the duration of this incentive is set to 25 years.
- Production Tax Credits (PTCs) are also included under the title of "Renewable Energy Production Credit" on the RetScreen® Financial Summary page. The current rate for PTCs is currently 2.1 cents per kilowatt hour for a duration of ten years.
- Inflation rate and the discount rate are set at an annual increase of 2.5%.
- Forward capacity market payment, REPI payment and energy cost escalation rate are set at an annual increase of 0%.

Ancial Parameters voided cost of energy \$/kWh 0.1800 Debt ratio % 80.00 E production credit \$/kWh 0.036 Debt interest rate % 80.01 E production credit duration yr 10 Debt interest rate % 80.01 E credit escalation rate % 0.0% 115.01 Income tax analysis? yes/no N HG reduction credit duration yr 25 Income tax analysis? yes/no N HG credit escalation rate % 0.0% 0.0% Income tax analysis? yes/no N HG credit escalation rate % 0.0% 2.5% Income tax analysis? yes/no N Feasibility study 1.7% \$ 76,000 O&M \$ 42,994 Feasibility study 1.7% \$ 76,000 Debt payments - 15 yrs \$ 418,700 Balance of plant 13.2% \$ 590,000 Annual Costs and Debt Feasibility 662,000 Capaeticy savings/income \$ 837,232 Capaeticy savings/income \$ 837,232	nnual Energy Balance					
reject location memory delivered MWh 4,651 mr RE capacity KW	Draiast same	Comol	at A 1650 80 Matar			
enewable energy delivered MWh 4.651 Net CHG reduction t_{coc}/yr 1,622 workes RE available MWh 4.651 Net CHG reduction t_{coc}/yr 1,622 workes RE available MWh 4.651 Net GHG reduction -25 yrs t_{coc} 40,670 ancial Parameters voided cost of energy \$/kWh 0.1800 beb tratio \$/kWh 0.0360 beb tratio \$/kWh 0.0360 bet tratio \$/kWh 0.0360 beb tratio \$/kWh 0.0360 bet tratio \$/kWh 0.0360		Camer				
xcess RE available MWh		MW/b	•	Net GHG reduction	t /vr	1 627
Imm RE capacity KW			,		CO2/ y1	1,027
Init type Central-grid Net GHG emission reduction - 25 yrs t ₀₀₂ 40,670 ancial Parameters voided cost of energy \$/kW/h 0.1800 Debt ratio % 80,00 E production credit \$/kW/h 0.036 Debt interest rate % 80,00 HG ension reduction credit duration yr 10 Debt interest rate % 80,00 HG reduction credit duration yr 115,00 Debt term yr 15,00 HG reduction credit duration yr 225 Income tax analysis? yes/no N Intal Costs 0.0% 2.5% OAM \$ 42,998 Income tax analysis? yes/no N N Annual Costs and Debt OAM \$ 44,998 Development 8.3% 373,000 Debt payments - 15 yrs \$ 418,708 Energy equipment 59.4% \$ 2.662,000 Debt payments - 15 yrs \$ 418,708 Itial Costs Total \$ 4417,994 Annual Savings income <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Ancial Parameters voided cost of energy \$/kWh 0.1800 Debt ratio % 80.00 E production credit \$/kWh 0.036 Debt interest rate % 80.01 E production credit duration yr 10 Debt interest rate % 80.01 E credit escalation rate % 0.0% 115.01 Income tax analysis? yes/no N HG reduction credit duration yr 25 Income tax analysis? yes/no N HG credit escalation rate % 0.0% 0.0% Income tax analysis? yes/no N HG credit escalation rate % 0.0% 2.5% Income tax analysis? yes/no N Feasibility study 1.7% \$ 76,000 O&M \$ 42,994 Feasibility study 1.7% \$ 76,000 Debt payments - 15 yrs \$ 418,700 Balance of plant 13.2% \$ 590,000 Annual Costs and Debt Feasibility 662,000 Capaeticy savings/income \$ 837,232 Capaeticy savings/income \$ 837,232	Grid type			Net GHG emission reduction - 25 vrs	tcoz	40,670
voided cost of energy \$/kWh 0.1800 Debt ratio % 80.05 E production credit \$/kWh 0.036 Debt ratio % 80.05 E production credit duration yr 10 Debt ratio % 80.05 E production credit duration yr 10 Debt ratio % 80.05 E credit escalation rate % 0.0% 115.0 Income tax analysis? yes/no N HG emission reduction credit duration yr 225 Development 8.05 N N HG credit escalation rate % 0.0% 2.5% N N N iscount rate % 2.5% S 148.708 S S 148.708 Peet Costs and Savings itital Costs Annual Costs and Debt S S 148.708 S 2.662.000 Annual Costs and Debt S S 148.708 Capaei y savings/income \$ 647.702 Gaba 2.723.723.723.723.723.723.723.723.723.72					-002	
E production credit \$/kWh 0.036 0.036 Debt interest rate Debt term % 8.00 0.076 E production credit duration E credit escalation rate (FG reduction credit duration with G reduction credit \$/t _{CO2} 115.0 10.07% Income tax analysis? yes/no N HG envision reduction credit HG reduction credit duration redit duration % 0.0% 0.0% Income tax analysis? yes/no N HG credit escalation rate fiftion % 0.0% 0.0% Income tax analysis? yes/no N Interpret fiftion % 0.0% 0.0% Income tax analysis? yes/no N Interpret fiftion % 0.0% 0.0% Income tax analysis? yes/no N Interpret fiftion % 2.5% 0.0% 0.0% Income tax analysis? N Interpret fiftion % 2.5% 0.0% 0.0% Annual Costs and Debt Income tax analysis? N Development 8.3% \$ 373.000 Energy equipments - 15 yrs \$ 418.706 Balance of plant 13.2% \$ 589.000 Annual Savings / ncome \$ 37.2	nancial Parameters					
E production credit \$/kWh 0.036 Debt interest rate % 8.09 E production credit duration yr 10 Debt term yr 12 E credit escalation rate % 0.0% Income tax analysis? yes/no N HG enviction credit duration yr 25 Income tax analysis? yes/no N HG credit escalation rate % 0.0% Income tax analysis? yes/no N HG credit escalation rate % 0.0% Income tax analysis? yes/no N HG credit escalation rate % 0.0% 2.5% Income tax analysis? yes/no N HG credit field yr 2.5 Income tax analysis? yes/no N Ject Costs and Savings iscount rate % 0.0% 2.5% 0.0% Annual Costs and Debt Debt payments - 15 yrs \$ 418,706 Development 8.3% \$ 2,662,000 Annual Costs and Debt - Total \$ 461,700 Balanee of plant 13.2%	Avoided cost of energy	\$/kWh	0.1800	Debt ratio	%	80.0%
E oredit escalation rate % 0.0% HG emission reduction credit \$\frac{115.0}{17.0} HG credit on credit duration yr HG credit escalation rate % 0.0% HG credit escalation rate % 0.0% itiation % 2.5% iscount rate % 2.5% roject life yr 25 fect Costs and Savings fect Costs and Savings fet Costs and Savings fer Costs and Savings fer Costs and Savings fer Costs and Savings fer Costs and Debt fer costs and Debt - Total \$ 461,700 fer adv for train 13.2% \$ 580,000 fiscelaneous 13.0% \$ 4,479,904 fer davings or Income fer orduction credit income \$ 837,233 fer for train \$ 250,000 for train	RE production credit	\$/kWh	0.036	Debt interest rate	%	8.0%
HG emission reduction credit duration yr 115.0 Income tax analysis? yes/no N HG reduction credit duration yr 0.0% 25 0.0%	RE production credit duration	yr	10	Debt term	yr	15
HG reduction credit duration HG credit escalation rate yr 25 0.0% hergy cost escalation rate % 0.0% iflation % 2.5% iscount rate % 2.5% iscount rate % 2.5% ject Costs and Savings xnual Costs and Debt itital Costs Annual Costs and Debt Peasibility study 1.7% \$ predeoment 8.3% \$ Balance of plant 13.2% \$ Stallal Costs \$ 4.4% Mital Costs - Total \$ 4.61,700 Balance of plant 13.2% \$ 583,904 Initial Costs - Total 100.0% \$ 4.479,904 Capacity savings/income \$ 837,233 capacity savings/income \$ 837,233 capacity savings/income \$ 837,233 capacity savings/income \$ 1.67,443 GHG reduction income - 25 yrs \$ 167,443 GHG reduction income - 25 yrs \$ 1.79,761 Drive train \$ 250,000 Schedule yrt # 25 <td>RE credit escalation rate</td> <td>%</td> <td>0.0%</td> <td></td> <td>· _</td> <td></td>	RE credit escalation rate	%	0.0%		· _	
HG reduction credit duration HG credit escalation rate yr 25 0.0% hergy cost escalation rate % 0.0% iflation % 2.5% iscount rate % 2.5% iscount rate % 2.5% ject Costs and Savings xnual Costs and Debt itital Costs Annual Costs and Debt Peasibility study 1.7% \$ predeoment 8.3% \$ Balance of plant 13.2% \$ Stallal Costs \$ 4.4% Mital Costs - Total \$ 4.61,700 Balance of plant 13.2% \$ 583,904 Initial Costs - Total 100.0% \$ 4.479,904 Capacity savings/income \$ 837,233 capacity savings/income \$ 837,233 capacity savings/income \$ 837,233 capacity savings/income \$ 1.67,443 GHG reduction income - 25 yrs \$ 167,443 GHG reduction income - 25 yrs \$ 1.79,761 Drive train \$ 250,000 Schedule yrt # 25 <td>GHG emission reduction credit</td> <td>\$/t_{CO2}</td> <td>115.0</td> <td>Income tax analysis?</td> <td>yes/no</td> <td>N</td>	GHG emission reduction credit	\$/t _{CO2}	115.0	Income tax analysis?	yes/no	N
HG credit escalation rate % 0.0% nergy cost escalation rate % 0.0% ifation % 2.5% iscount rate % 2.5% roject life yr 25 ject Costs and Savings initial Costs Annual Costs and Debt Feasibility study 1.7% \$ Development 8.3% 373,000 Engineering 4.4% \$ Segment 59,000 Debt payments - 15 yrs \$ Miscellaneous 13.2% \$ 590,000 Annual Costs and Debt - Total \$ 461,706 Balance of plant 13.2% \$ 590,000 Annual Savings or Income \$ 837,233 itial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,233 centives/Grants \$. RE production credit income - 10 yrs \$ artiol Costs (Credits) Drive train \$ 250,000 Schedule yr # 25 . <td>GHG reduction credit duration</td> <td></td> <td>25</td> <td>-</td> <td>· .</td> <td></td>	GHG reduction credit duration		25	-	· .	
Mattion % 2.5% iscount rate % 2.5% iscount rate % 2.5% iscount rate % 2.5% ject Costs and Savings 25 initial Costs Annual Costs and Debt Feasibility study 1.7% \$ Development 8.3% 373,000 Engineering 4.4% 195,000 Balance of plant 13.2% \$ Miscellaneous 13.0% \$ itial Costs - Total 100.0% \$ centives/Grants \$ 250,000 Schedule yr # 25 \$ 187,087 reidic Costs (Credits) Energy savings/income \$ Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 End of project life - Credit \$ - ancial Feasibility Calculate energy production cost? yes/no re-tax IRR and ROI % 81.2% Calculate energy production cost? yes/no <td>GHG credit escalation rate</td> <td></td> <td>0.0%</td> <td></td> <td></td> <td></td>	GHG credit escalation rate		0.0%			
Mattion % 2.5% iscount rate % 2.5% iscount rate % 2.5% iscount rate % 2.5% ject Costs and Savings 25 initial Costs Annual Costs and Debt Feasibility study 1.7% \$ Development 8.3% 373,000 Engineering 4.4% 195,000 Balance of plant 13.2% \$ Miscellaneous 13.0% \$ itial Costs - Total 100.0% \$ centives/Grants \$ 250,000 Schedule yr # 25 \$ 187,087 reidic Costs (Credits) Energy savings/income \$ Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 End of project life - Credit \$ - ancial Feasibility Calculate energy production cost? yes/no re-tax IRR and ROI % 81.2% Calculate energy production cost? yes/no <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Mattion % 2.5% iscount rate % 2.5% iscount rate % 2.5% iscount rate % 2.5% ject Costs and Savings 25 initial Costs Annual Costs and Debt Feasibility study 1.7% \$ Development 8.3% 373,000 Engineering 4.4% 195,000 Balance of plant 13.2% \$ Miscellaneous 13.0% \$ itial Costs - Total 100.0% \$ centives/Grants \$ 250,000 Schedule yr # 25 \$ 187,087 reidic Costs (Credits) Energy savings/income \$ Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 End of project life - Credit \$ - ancial Feasibility Calculate energy production cost? yes/no re-tax IRR and ROI % 81.2% Calculate energy production cost? yes/no <td>Energy cost escalation rate</td> <td>0/_</td> <td>0.0%</td> <td></td> <td></td> <td></td>	Energy cost escalation rate	0/_	0.0%			
iscount rate % 2.5% roject life yr 25 ject Costs and Savings initial Costs Feasibility study 1.7% \$ 76,000 Development 8.3% \$ 373,000 Engineering 4.4% \$ 195,000 Balance of plant 13.2% \$ 590,000 Miscellaneous 13.0% \$ 583,904 Annual Savings or Income bitial Costs - Total 100.0% \$ 4,479,904 Calculate costs (Credits) Drive train \$ 250,000 Bilades \$ 120,000 Bilades \$ 120,000 Schedule yr # 25 Bilades \$ 120,000 Schedule yr # 25 Schedule yr # 2						
roject life yr 25 ject Costs and Savings Annual Costs and Debt reasibility study 1.7% \$ 76,000 O&M \$ 42,996 Development 8.3% \$ 373,000 Debt payments - 15 yrs \$ 418,706 Energy equipment 59.4% \$ 2,662,000 Annual Costs and Debt - Total \$ 461,706 Balance of plant 13.2% \$ 583,904 Annual Costs and Debt - Total \$ 461,706 Miscellaneous 13.0% \$ 583,904 Annual Costs and Debt - Total \$ 487,203 Miscellaneous 13.0% \$ 583,904 Annual Costs and Debt - Total \$ 837,203 Ititial Costs - Total 100.0% 4,479,904 Energy savings/income \$ 837,203 Ititial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,203 Ititial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 937,203 It						
Ject Costs and Savings initial Costs Annual Costs and Debt Feasibility study 1.7% \$ 76,000 O&M \$ 42,996 Development 8.3% 373,000 Debt payments - 15 yrs \$ 418,706 Energy equipment 59.4% \$ 2,662,000 Annual Costs and Debt - Total \$ 461,706 Balance of plant 13.2% \$ 589,000 Annual Savings or Income \$ 479,904 Miscellaneous 13.0% \$ 683,904 Annual Savings or Income \$ 837,233 itial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,233 icentives/Grants \$ 167,447 GHG reduction income - 10 yrs \$ 167,447 geriodic Costs (Credits) Project dule yr # 25 \$ 187,083 Drive train \$ 250,000 Schedule yr # 25 \$ 1,191,761 Blades \$ 120,000 Schedule yr # 25 \$ 1,191,761 ertax IRR and ROI % 81.2% Calculate energy production cost? yes/no N imple Payback yr 3.9 - \$ 3,583,923 \$ 418,706 ertax IRR and ROI % 81.2% Calculate GHG reduction cost? <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Annual Costs and Debt Feasibility study 1.7% \$ 76,000 O&M \$ 42,996 Development 8.3% \$ 373,000 Engineering 4.4% \$ 195,000 Debt payments - 15 yrs \$ 418,706 Balance of plant 13.2% \$ 590,000 Annual Costs and Debt - Total \$ 461,706 Miscellaneous 13.0% \$ 583,904 Annual Savings or Income \$ 637,233 initial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,233 incentives/Grants \$	Toject life	yı	20			
Development 8.3% \$ 373,000 Engineering 4.4% \$ 195,000 Energy equipment 59.4% \$ 2,662,000 Balance of plant 13.2% \$ 590,000 Miscellaneous 13.0% \$ 583,904 Miscellaneous 100.0% \$ 4,479,904 Energy savings/income \$ 837,233 Capacity savings/income \$ 837,037 Intial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,037 Capacity savings/income \$ 837,037 Capacity savings/income \$ 817,037 Annual Savings - Total 100.0% \$ 1,191,761 Prive train \$ 250,000 Schedule yr # 25 \$ Blades \$ 120,000 \$ Schedule yr # 25 \$ End of project life - Credit \$ - - Calculate energy production cost? yes/no N re-tax IRR and ROI	Initial Costs	70/ ¢	76.000		¢	42.000
Engineering 4.4% \$ 195,000 Debt payments - 15 yrs \$ 418,708 Energy equipment 59.4% \$ 2,662,000 Annual Costs and Debt - Total \$ 461,700 Balance of plant 13.2% \$ 590,000 Annual Costs and Debt - Total \$ 461,700 Miscellaneous 13.0% \$ 583,904 Annual Savings or Income \$ 837,233 initial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,233 incentives/Grants \$,	Oam	φ	42,990
Energy equipment 59.4% \$ 2,662,000 Annual Costs and Debt - Total \$ 461,706 Balance of plant 13.2% \$ 590,000 Annual Costs and Debt - Total \$ 461,706 Miscellaneous 13.0% \$ 533,904 Annual Savings or Income \$ 837,233 initial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,233 incentives/Grants \$	•			Debt payments - 15 yrs	¢	118 708
Balance of plant 13.2% \$ 590,000 Miscellaneous 13.0% \$ 583,904 itial Costs - Total 100.0% \$ 4,479,904 Incentives/Grants \$ Incentives/Grants \$ Balance of project life - Credit \$ Drive train \$ 250,000 Blades \$ \$ 120,000 Schedule yr # 25	0 0					
Miscellaneous 13.0% \$ 583,904 Annual Savings or Income itial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,233 icentives/Grants \$, ,	Annual Costs and Debt - Total	φ	401,700
itial Costs - Total 100.0% \$ 4,479,904 Energy savings/income \$ 837,233 icentives/Grants \$ 167,447 GHG reduction credit income - 10 yrs \$ 167,447 GHG reduction income - 25 yrs \$ 187,087 Annual Savings - Total \$ 1,191,767 Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 End of project life - Credit \$ - ancial Feasibility Calculate energy production cost? yes/no re-tax IRR and ROI % 81.2% Calculate GHG reduction cost? yes/no imple Payback yr 3.9 9 9 ear-to-positive cash flow yr 1.2 Project equity \$ 895,937 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706			,	Annual Savings or Income		
acentives/Grants \$ Capacity savings/income \$ RE production credit income - 10 yrs \$ 167,447 GHG reduction income - 25 yrs \$ 187,081 Annual Savings - Total \$ 1,191,761 Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 End of project life - Credit \$ - ancial Feasibility Calculate energy production cost? yes/no N re-tax IRR and ROI % 81.2% Calculate GHG reduction cost? yes/no N imple Payback yr 3.9 - - - - ear-to-positive cash flow yr 1.2 Project depti \$ 3,583,923 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706				-	\$	837 231
Incentives/Grants \$ RE production credit income - 10 yrs \$ 167,447 GHG reduction income - 25 yrs \$ 187,081 Annual Savings - Total \$ 1,191,761 Prive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 End of project life - Credit \$ - Annual Feasibility Calculate energy production cost? yes/no N re-tax IRR and ROI % 81.2% Calculate GHG reduction cost? yes/no N imple Payback yr 3.9 ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,922 nual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,700		γ/0 ψ	4,410,004	e , e		007,200
GHG reduction income - 25 yrs \$ 187,081 Annual Savings - Total \$ 1,191,761 Annual Savings - Total \$ 1,191,761 Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 \$ End of project life - Credit \$ - - - Calculate energy production cost? yes/no N re-tax IRR and ROI % 81.2% Calculate energy production cost? yes/no N merical Re and ROI % 81.2% Calculate GHG reduction cost? yes/no N miple Payback yr 3.9 - - ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,922 nual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706	Incentives/Grants	\$. , ,		167 447
Annual Savings - Total \$ 1,191,761 eriodic Costs (Credits) Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 S End of project life - Credit \$ - End of project life - Credit S ancial Feasibility Calculate energy production cost? yes/no N re-tax IRR and ROI % 81.2% Calculate GHG reduction cost? yes/no N imple Payback yr 3.9 ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706		Ψ		, , ,		- ,
eriodic Costs (Credits) Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 S End of project life - Credit \$ -						,
Drive train \$ 250,000 Schedule yr # 25 Blades \$ 120,000 Schedule yr # 25 <u>End of project life - Credit</u> \$ - <u>End of project life - Credit</u> \$ - <u>Calculate energy production cost? yes/no N</u> <u>re-tax IRR and ROI % 81.2%</u> Calculate GHG reduction cost? yes/no <u>N</u> <u>imple Payback</u> yr 3.9 ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706	Periodic Costs (Credits)			· ······	•	.,,.
Blades \$ 120,000 Schedule yr # 25 \$ - End of project life - Credit \$ ancial Feasibility - re-tax IRR and ROI % 81.2% fter-tax IRR and ROI % 81.2% calculate energy production cost? yes/no miple Payback yr ear-to-positive cash flow yr yr 1.2 Project dept \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nual Life Cycle Savings \$ 695,424	· · · · · ·	\$	250,000	Schedule yr # 25		
\$ - End of project life - Credit \$ ancial Feasibility - re-tax IRR and ROI % 81.2% fter-tax IRR and ROI % 81.2% calculate energy production cost? yes/no N imple Payback yr 3.9 ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706	Blades		,			
ancial Feasibility re-tax IRR and ROI % 81.2% fter-tax IRR and ROI % 81.2% imple Payback yr 3.9 ear-to-positive cash flow yr 1.2 Project equity \$ 895,98' et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,92' nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706			-	-		
Calculate energy production cost? yes/no N re-tax IRR and ROI % 81.2% N fter-tax IRR and ROI % 81.2% Calculate GHG reduction cost? yes/no N imple Payback yr 3.9 895,981 ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,708	End of project life - Credit		-			
Calculate energy production cost? yes/no N re-tax IRR and ROI % 81.2% N fter-tax IRR and ROI % 81.2% Calculate GHG reduction cost? yes/no N imple Payback yr 3.9 895,981 ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,708	noncial Essethility					
re-tax IRR and ROI % 81.2% fter-tax IRR and ROI % 81.2% Calculate GHG reduction cost? yes/no N imple Payback yr 3.9 ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,708	nancial Feasibility			Calculate energy production cost?	ves/no	N
fter-tax IRR and ROI%81.2%Calculate GHG reduction cost?yes/noNimple Paybackyr3.9ear-to-positive cash flowyr1.2Project equity\$895,98'et Present Value - NPV\$12,812,748Project debt\$3,583,92'nnual Life Cycle Savings\$695,424Debt payments\$/yr418,708	Pre-tax IRR and ROI	%	81.2%	Calculate energy production cost?	yes/10	
imple Paybackyr3.9ear-to-positive cash flowyr1.2Project equity\$\$895,98'et Present Value - NPV\$12,812,748Project debt\$3,583,92'nnual Life Cycle Savings\$695,424Debt payments\$/yr418,706				Calculate GHG reduction cost?	ves/no	N
ear-to-positive cash flow yr 1.2 Project equity \$ 895,981 et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706				Calculate of the reduction boot:	,00/110	
et Present Value - NPV \$ 12,812,748 Project debt \$ 3,583,923 nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,706	. ,			Project equity	\$	895 98
nnual Life Cycle Savings \$ 695,424 Debt payments \$/yr 418,708						,
				•	•	
	Benefit-Cost (B-C) ratio	Ψ -	15.30	Debt service coverage	φ/y: -	2.74

ear # 0 1 2 3 4 5 6 7 7 8 9 9 10 11	Pre-tax \$ (895,981) 728,980 727,878 726,749 725,591 724,405 723,189 721,942 720,664 719,354 718,012	After-tax \$ (895,981) 728,980 727,878 726,749 725,591 724,405 723,189 721,942 720,664 719,354	Cumulative \$ (895,981) (167,001) 560,877 1,287,626 2,013,218 2,737,622 3,460,811 4,182,753 4,903,417
0 1 2 3 4 5 6 6 7 8 9 10 11 12	(895,981) 728,980 727,878 726,749 725,591 724,405 723,189 721,942 720,664 719,354	(895,981) 728,980 727,878 726,749 725,591 724,405 723,189 721,942 720,664	(895,981) (167,001) 560,877 1,287,626 2,013,218 2,737,622 3,460,811 4,182,753
1 2 3 4 5 6 7 8 9 10 11 12	728,980 727,878 726,749 725,591 724,405 723,189 721,942 720,664 719,354	728,980 727,878 726,749 725,591 724,405 723,189 721,942 720,664	(167,001) 560,877 1,287,626 2,013,218 2,737,622 3,460,811 4,182,753
2 3 4 5 6 7 8 9 10 11 12	727,878 726,749 725,591 724,405 723,189 721,942 720,664 719,354	727,878 726,749 725,591 724,405 723,189 721,942 720,664	560,877 1,287,626 2,013,218 2,737,622 3,460,811 4,182,753
3 4 5 6 7 8 9 10 11 12	726,749 725,591 724,405 723,189 721,942 720,664 719,354	726,749 725,591 724,405 723,189 721,942 720,664	1,287,626 2,013,218 2,737,622 3,460,811 4,182,753
4 5 6 7 8 9 10 11 12	725,591 724,405 723,189 721,942 720,664 719,354	725,591 724,405 723,189 721,942 720,664	2,013,218 2,737,622 3,460,811 4,182,753
5 6 7 8 9 10 11 12	724,405 723,189 721,942 720,664 719,354	724,405 723,189 721,942 720,664	2,737,622 3,460,811 4,182,753
6 7 8 9 10 11 12	723,189 721,942 720,664 719,354	723,189 721,942 720,664	3,460,811 4,182,753
7 8 9 10 11 12	721,942 720,664 719,354	721,942 720,664	4,182,753
8 9 10 11 12	720,664 719,354	720,664	, ,
9 10 11 12	719,354		4,903,417
10 11 12		719,354	5,622,772
11 12	110,012	718,012	6,340,784
12	549,189	549,189	
	549,189 547,779	549,189	6,889,973 7,437,752
10	546,333	546,333	7,984,085
13 14	540,333 544,852	544,852	
	,	,	8,528,937
15	543,333	543,333	9,072,270
16	960,484	960,484	10,032,753
17	958,888	958,888	10,991,642
18	957,253	957,253	11,948,894
19	955,576	955,576	12,904,470
20	953,858	953,858	13,858,328
21	952,096	952,096	14,810,424
22	950,291	950,291	15,760,715
23	948,440	948,440	16,709,155
24	946,543	946,543	17,655,698
25	258,640	258,640	17,914,338

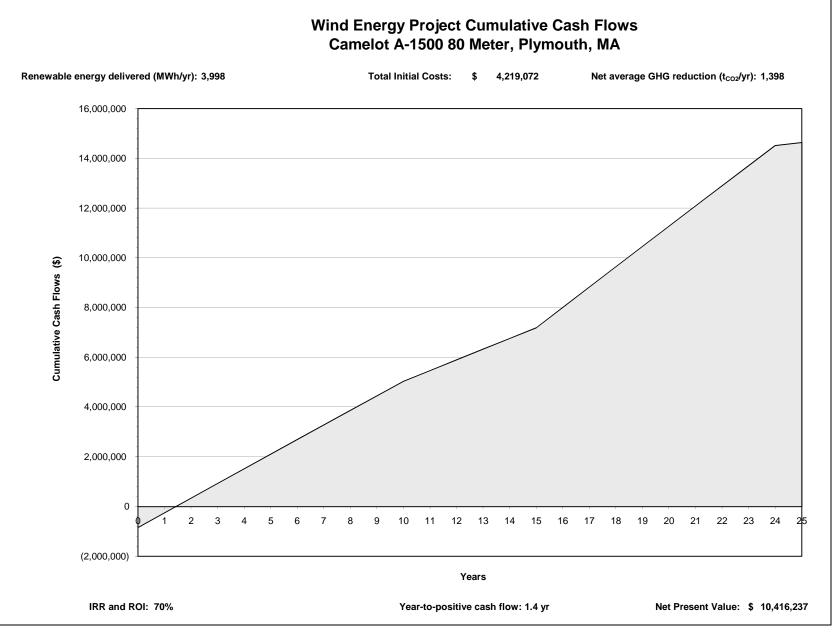
© Minister of Natural Resources Canada 1997-2005.

Version 3.2

© Minister of Natural Resources Canada 1997-2005.

AAER A-1500 80 Meter

The following financial summaries have been calculated using the following:


- 20% down
- 8% overall interest rate
- 15 Year payback
- Avoided cost of energy is assumed to be a net metering value of 18 cents per kilowatt hour
- ISO New England Forward Capacity payments are included under the title of "Renewable Energy Production Credit" on the RetScreen® Financial Summary page. The rate for a 1,500 kilowatt nameplate capacity turbine producing 3,998,000 kilowatt hours annually is assumed to be 1.6 cents per kilowatt hour using a rate of \$3.60 per month for a duration of 10 years.
- Renewable Energy Credits are included under title of "GHG Emission Reduction Credit" on the RetScreen® Financial Summary page. The average rate is assumed to be 4.0 cents per kilowatt hour or \$115 per ton of CO₂ removed from the atmosphere. Contract lengths vary from 1-10 years. For this financial model, the duration of this incentive is set to 25 years.
- Production Tax Credits (PTCs) are also included under the title of "Renewable Energy Production Credit" on the RetScreen® Financial Summary page. The current rate for PTCs is currently 2.1 cents per kilowatt hour for a duration of ten years.
- Inflation rate and the discount rate are set at an annual increase of 2.5%.
- Forward capacity market payment, renewable energy credit payment and energy cost escalation rate are set at an annual increase of 0%.

nnual Energy Balance						
Project name		Camelo	ot A-1500 80 Meter			
Project location			Plymouth, MA			
Renewable energy deliver	red	MWh	3,998	Net GHG reduction	t _{CO2} /yr	1,398
Excess RE available		MWh	<u> </u>			
Firm RE capacity		kW	-			
Grid type			Central-grid	Net GHG emission reduction - 25 yrs	t _{CO2}	34,962
nancial Parameters						
Avoided cost of energy		\$/kWh	0.1800	Debt ratio	%	80.0%
RE production credit		\$/kWh	0.037	Debt interest rate	%	8.0%
RE production credit dura	ition	yr	10	Debt term	yr	15
RE credit escalation rate		%	0.0%			
GHG emission reduction		\$/t _{CO2}	115.0	Income tax analysis?	yes/no	No
GHG reduction credit dura		yr	25			
GHG credit escalation rate	е	%	0.0%			
Energy cost escalation rat	te	%	0.0%			
Inflation		%	2.5%			
Discount rate		%	2.5%			
Project life		yr	25			
oject Costs and Saving	~					
oject costs and Savings	5					
Initial Costs				Annual Costs and Debt		
Feasibility study	1.8%	\$	76,000	O&M	\$	40,241
Development	7.5%	\$	318,000			
Engineering	4.1%	\$	175,000	Debt payments - 15 yrs	\$	394,330
Energy equipment	60.3%	\$	2,544,000	Annual Costs and Debt - Total	\$	434,571
Balance of plant	13.2%	\$	555,000			
Miscellaneous	13.1%	\$	551,072	Annual Savings or Income		
Initial Costs - Total	100.0%	\$	4,219,072	Energy savings/income	\$	719,728
				Capacity savings/income	\$	-
Incentives/Grants		\$	-	RE production credit income - 10 yrs	\$	147,944
				GHG reduction income - 25 yrs	\$	160,824
				Annual Savings - Total	\$	1,028,496
Periodic Costs (Credits))	•	050 000			
Drive train		\$	250,000	Schedule yr # 25		
Blades		\$	120,000	Schedule yr # 25		
		\$	-			
End of project life - Cre	dit	\$	-			
nancial Feasibility						
		0/	70.004	Calculate energy production cost?	yes/no	N
Pre-tax IRR and ROI		%	70.0%		· · · · / · · · ·	
After-tax IRR and ROI		%	70.0%	Calculate GHG reduction cost?	yes/no	N
Simple Payback		yr	4.3		•	
Year-to-positive cash flow	/	yr	1.4	Project equity	\$	843,814
Net Present Value - NPV		\$	10,416,237	Project debt	\$	3,375,258
Annual Life Cycle Savings	S	\$	565,351	Debt payments	\$/yr	394,330
Benefit-Cost (B-C) ratio		-	13.34	Debt service coverage	-	2.50

	Pre-tax	After-tax	Cumulative
#	\$	\$	\$
0	(843,814)	(843,814)	(843,814)
1	592,918	592,918	(250,896)
2	591,887	591,887	340,991
3	590,830	590,830	931,822
4	589,747	589,747	1,521,569
5	588,636	588,636	2,110,205
6	587,498	587,498	2,697,703
7	586,332	586,332	3,284,035
8	585,136	585,136	3,869,171
9	583,910	583,910	4,453,080
10	582,654	582,654	5,035,734
11	433,422	433,422	5,469,156
12	432,102	432,102	5,901,258
13	430,749	430,749	6,332,006
14	429,362	429,362	6,761,368
15	427,940	427,940	7,189,309
16	820,813	820,813	8,010,122
17	819,320	819,320	8,829,442
18	817,789	817,789	9,647,230
19	816,220	816,220	10,463,450
20	814,612	814,612	11,278,062
21	812,963	812,963	12,091,025
22	811,273	811,273	12,902,298
23	809,541	809,541	13,711,840
24	807,766	807,766	14,519,606
	119,987	119,987	14,639,593

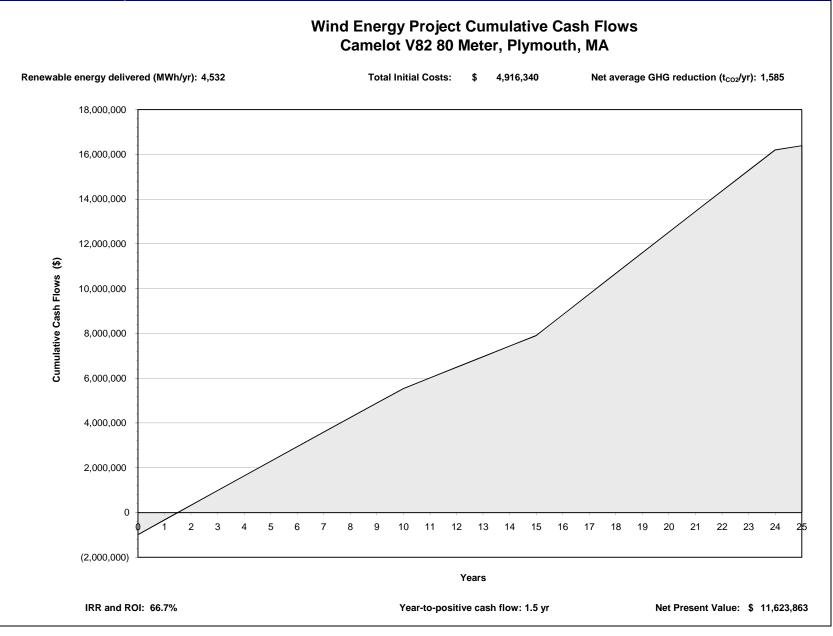
© Minister of Natural Resources Canada 1997-2005.

© Minister of Natural Resources Canada 1997-2005.

Vestas V82 80 Meter

The following financial summaries have been calculated using the following:

- 20% down
- 8% overall interest rate
- 15 Year payback
- Avoided cost of energy is assumed to be a net metering value of 18 cents per kilowatt hour
- ISO New England Forward Capacity payments are included under the title of "Renewable Energy Production Credit" on the RetScreen® Financial Summary page. The rate for a 1,650 kilowatt nameplate capacity turbine producing 4,532,000 kilowatt hours annually is assumed to be 1.6 cents per kilowatt hour using a rate of \$3.60 per month for a duration of 10 years.
- Renewable Energy Credits are included under title of "GHG Emission Reduction Credit" on the RetScreen® Financial Summary page. The average rate is assumed to be 4.0 cents per kilowatt hour or \$115 per ton of CO₂ removed from the atmosphere. Contract lengths vary from 1-10 years. For this financial model, the duration of this incentive is set to 25 years.
- Production Tax Credits (PTCs) are also included under the title of "Renewable Energy Production Credit" on the RetScreen® Financial Summary page. The current rate for PTCs is currently 2.1 cents per kilowatt hour for a duration of ten years.
- Inflation rate and the discount rate are set at an annual increase of 2.5%.
- Forward capacity market payment, REPI payment and energy cost escalation rate are set at an annual increase of 0%.


nnual Energy Balance						
Project name		Can	nelot V82 80 Meter			
Project location			Plymouth, MA			
Renewable energy delive	red	MWh	4,532	Net GHG reduction	t _{CO2} /yr	1,585
Excess RE available		MWh	-			
Firm RE capacity		kW	-			
Grid type			Central-grid	Net GHG emission reduction - 25 yrs	t _{CO2}	39,626
nancial Parameters						
Avoided cost of energy		\$/kWh	0.1800	Debt ratio	%	80.0%
RE production credit		\$/kWh	0.037	Debt interest rate	%	8.0%
RE production credit dura	tion	yr	10	Debt term	yr	15
RE credit escalation rate		%	0.0%	Dost term	<i>.</i>	10
GHG emission reduction	credit	\$/t _{CO2}	115.0	Income tax analysis?	ves/no	N
GHG reduction credit dura		φ, ι <u>co</u> 2 yr	25		,	
GHG credit escalation rat		%	0.0%			
Energy cost escalation ra	te	%	0.0%			
Inflation		%	2.5%			
Discount rate		%	2.5%			
Project life		yr	25			
oject Costs and Saving	S					
Initial Costs				Annual Costs and Debt		
Feasibility study	1.5%	\$	76,000	O&M	\$	46,762
Development	8.0%	\$	393,000			
Engineering	4.3%	\$	212,500	Debt payments - 15 yrs	\$	459,499
Energy equipment	60.6%	\$	2,981,000	Annual Costs and Debt - Total	\$	506,261
Balance of plant	12.5%	\$	615,000			
Miscellaneous Initial Costs - Total	13.0%	\$	638,840	Annual Savings or Income	¢	045 740
initiai Costs - Total	100.0%	\$	4,916,340	Energy savings/income	\$ \$	815,740
Incentives/Grants		\$	-	Capacity savings/income	\$ \$	- 167,680
incentives/Grants		Ф	-	RE production credit income - 10 yrs GHG reduction income - 25 yrs	\$ \$,
				Annual Savings - Total	ծ \$	182,278 1,165,698
Periodic Costs (Credits)	`			Annual Savings - Totai	φ	1,105,090
Drive train	,	\$	265,000	Schedule yr # 25		
Blades		\$	125,000	Schedule yr # 25		
2.0000		φ \$				
End of project life - Cre	dit	Ψ \$	-			
nancial Feasibility					100/00	N
Pre-tax IRR and ROI		%	66.7%	Calculate energy production cost?	yes/no	N
		%	66.7%	Calculate GHG reduction cost?	ves/no	N
After-tax IRR and ROI		yr	4.4		,00,110	
After-tax IRR and ROI Simple Payback						
Simple Payback	v	•		Project equity	\$	983 268
Simple Payback Year-to-positive cash flow		yr	1.5	Project equity Project debt	\$ \$,
Simple Payback		•		Project equity Project debt Debt payments	\$ \$ \$/yr	983,268 3,933,072 459,499

	ash Flows	After test	Comparing
rear #	Pre-tax \$	After-tax \$	Cumulative \$
# 0	• (983,268)	(983,268)	(983,268)
1	658,268	658,268	(325,000)
2	657,070	657,070	332,070
2	655,842	655,842	987,912
4	654,583	654,583	1,642,494
4 5	653,292	653,292	2,295,786
6	651,970	651,970	2,295,786
7	650,614	650,614	2,947,750
8	649,224	649,224	4,247,594
o 9	649,224 647,800	,	
	,	647,800	4,895,394
10	646,340	646,340	5,541,734
11	477,164	477,164	6,018,898
12	475,630	475,630	6,494,527
13	474,057	474,057	6,968,585
14	472,446	472,446	7,441,031
15	470,794	470,794	7,911,825
16	928,600	928,600	8,840,425
17	926,865	926,865	9,767,289
18	925,086	925,086	10,692,375
19	923,262	923,262	11,615,637
20	921,394	921,394	12,537,031
21	919,478	919,478	13,456,509
22	917,514	917,514	14,374,023
23	915,502	915,502	15,289,525
24	913,439	913,439	16,202,964
25	188,286	188,286	16,391,250

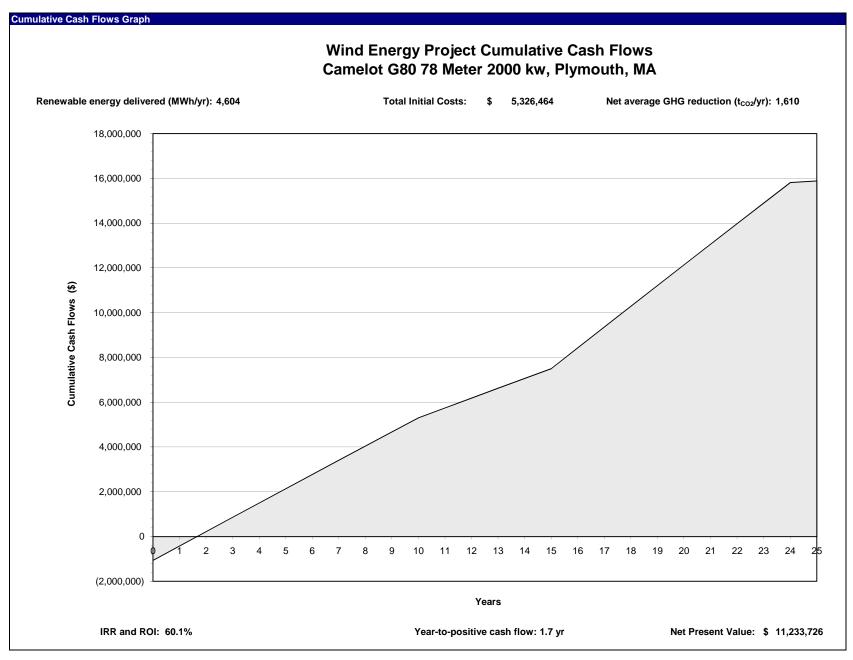
© Minister of Natural Resources Canada 1997-2005.

6/3/2009;Camelot Vestas.V82.1.65MW 80 Meter.xls

Cumulative Cash Flows Graph

© Minister of Natural Resources Canada 1997-2005.

Gamesa G80 78 Meter


The following financial summaries have been calculated using the following:

- 20% down
- 8% overall interest rate
- 15 Year payback
- Avoided cost of energy is assumed to be a net metering value of 18 cents per kilowatt hour
- ISO New England Forward Capacity payments are included under the title of "Renewable Energy Production Credit" on the RetScreen® Financial Summary page. The rate for a 2,000 kilowatt nameplate capacity turbine producing 4,604,000 kilowatt hours annually is assumed to be 1.9 cents per kilowatt hour using a rate of \$3.60 per month for a duration of 10 years.
- Renewable Energy Credits are included under title of "GHG Emission Reduction Credit" on the RetScreen® Financial Summary page. The average rate is assumed to be 4.0 cents per kilowatt hour or \$115 per ton of CO₂ removed from the atmosphere. Contract lengths vary from 1-10 years. For this financial model, the duration of this incentive is set to 25 years.
- Production Tax Credits (PTCs) are also included under the title of "Renewable Energy Production Credit" on the RetScreen® Financial Summary page. The current rate for PTCs is currently 2.1 cents per kilowatt hour for a duration of ten years.
- Inflation rate and the discount rate are set at an annual increase of 2.5%.
- Forward capacity market payment, REPI payment and energy cost escalation rate are set at an annual increase of 0%.

Project name	Came	lot G80	78 Meter 2000 kw			
Project location			Plymouth, MA			
Renewable energy delivered		MWh	4,604	Net GHG reduction	t _{CO2} /yr	1,610
Excess RE available		MWh	-			
Firm RE capacity		kW	-			
Grid type			Central-grid	Net GHG emission reduction - 25 yrs	t _{CO2}	40,254
nancial Parameters						
Avoided cost of energy		\$/kWh	0.1800	Debt ratio	%	80.0%
RE production credit		\$/kWh	0.040	Debt interest rate	%	8.0%
RE production credit duration		yr	10	Debt term	yr	15
RE credit escalation rate		%	0.0%		. –	
GHG emission reduction cred	ıt	\$/t _{CO2}	115.0	Income tax analysis?	yes/no	N
GHG reduction credit duration	۱	yr	25			
GHG credit escalation rate		%	0.0%			
Energy cost escalation rate		%	0.0%			
Inflation		%	2.5%			
Discount rate		%	2.5%			
Project life		yr	25			
oject Costs and Savings						
nitial Costs				Annual Costs and Debt		
Feasibility study	1.4%	\$	76,000	O&M	\$	55,125
Development	7.9%	\$	423,000			
Engineering	4.3%	\$	230,000	Debt payments - 15 yrs	\$	497,831
07 1 1	60.5%	\$	3,222,000	Annual Costs and Debt - Total	\$	552,956
	12.9%	\$	685,000			
	13.0%	\$	690,464	Annual Savings or Income	•	
nitial Costs - Total 10	00.0%	\$	5,326,464	Energy savings/income	\$	828,669
		^		Capacity savings/income	\$	-
Incentives/Grants		\$	-	RE production credit income - 10 yrs	\$	184,149
				GHG reduction income - 25 yrs	\$	185,167
				Annual Savings - Total	\$	1,197,984
		•		-	\$	1,197,984
Drive train		\$	300,000	Schedule yr # 25	\$	1,197,984
		\$	300,000 150,000	-	\$	1,197,984
Drive train Blades		\$ \$		Schedule yr # 25	\$	1,197,984
		\$		Schedule yr # 25	\$	1,197,984
Drive train Blades		\$ \$		Schedule yr # 25 Schedule yr # 25		
Drive train Blades End of project life - Credit nancial Feasibility		\$ \$ \$	150,000 - -	Schedule yr # 25	\$ yes/no	
Drive train Blades End of project life - Credit nancial Feasibility Pre-tax IRR and ROI		\$ \$ \$	150,000 - - 60.1%	Schedule yr # 25 Schedule yr # 25 Calculate energy production cost?	yes/no	N
Drive train Blades End of project life - Credit nancial Feasibility Pre-tax IRR and ROI After-tax IRR and ROI		\$ \$ \$ %	150,000 - - 60.1% 60.1%	Schedule yr # 25 Schedule yr # 25		N
Drive train Blades End of project life - Credit nancial Feasibility Pre-tax IRR and ROI After-tax IRR and ROI Simple Payback		\$ \$ % % yr	150,000 - - 60.1% 60.1% 4.7	Schedule yr # 25 Schedule yr # 25 Calculate energy production cost? Calculate GHG reduction cost?	yes/no	N
Drive train Blades End of project life - Credit nancial Feasibility Pre-tax IRR and ROI After-tax IRR and ROI Simple Payback Year-to-positive cash flow		\$ \$ % % yr yr yr	150,000 - - - 60.1% 60.1% 4.7 1.7	Schedule yr # 25 Schedule yr # 25 Calculate energy production cost? Calculate GHG reduction cost? Project equity	yes/no yes/no \$	N N 1,065,293
Drive train Blades End of project life - Credit nancial Feasibility Pre-tax IRR and ROI After-tax IRR and ROI		\$ \$ % % yr	150,000 - - 60.1% 60.1% 4.7	Schedule yr # 25 Schedule yr # 25 Calculate energy production cost? Calculate GHG reduction cost?	yes/no	1,197,984

1007	ash Flows	After to-	Cumulative
ear	Pre-tax	After-tax	Cumulative
#	(4.005.000)	\$	\$
0	(1,065,293)	(1,065,293)	(1,065,293)
1	643,651	643,651	(421,642)
2	642,238	642,238	220,596
3	640,790	640,790	861,386
4	639,306	639,306	1,500,692
5	637,785	637,785	2,138,477
6	636,226	636,226	2,774,703
7	634,627	634,627	3,409,330
8	632,989	632,989	4,042,320
9	631,310	631,310	4,673,630
10	629,589	629,589	5,303,219
11	443,676	443,676	5,746,895
12	441,868	441,868	6,188,764
13	440,015	440,015	6,628,778
14	438,115	438,115	7,066,893
15	436,168	436,168	7,503,061
16	932,002	932,002	8,435,064
17	929,957	929,957	9,365,020
18	927,860	927,860	10,292,880
19	925,710	925,710	11,218,590
20	923,507	923,507	12,142,097
21	921,249	921,249	13,063,346
22	918,934	918,934	13,982,280
23	916,562	916,562	14,898,842
24	914,130	914,130	15,812,972
25	77,362	77,362	15,890,334

© Minister of Natural Resources Canada 1997-2005.

© Minister of Natural Resources Canada 1997-2005.

APPENDIX B Energy Models, Cost Analysis, and Greenhouse Gas Emissions

AAER A-1650 80 Meter

The following cost summary estimates have been calculated without the following assumptions:

- Site Investigation
- Wind Resource Assessment
- GHG Baseline Study and Monitoring Plan
- Land Rights
- GHG Validation and Registration
- Project financing
- Tenders and Contracting
- Substation(s)
- Training
- Land Lease
- Property Taxes
- GHG Monitoring and Verification
- Community Benefits

The following financial summaries have been calculated **using** the following assumptions:

- Feasibility studies expenses at 76,000
- Development expenses at \$373,000
- Engineering expenses at \$195,000
- The price of an AAER A-1650 turbine at \$2,400,000
- Transporting turbine and parts at \$190,000
- Foundation construction and design expenses at \$200,000.
- Turbine erection expenses at \$150,000
- Road construction expenses at \$100,000.
- Transmission line construction and expenses at \$100,000.
- Travel and accommodation during the initial development of the project set to \$4,000. Annual travel expenses are set to \$3,000.

^{*}The values assumed in the following cost summaries are preliminary estimates and may not reflect the true current values of the cost analysis.

RETScreen[®] Energy Model - Wind Energy Project

Units: Metric

e Conditions Estimate		Estimate	Notes/Range
Project name	C	Camelot A-1650 80 Meter	<u>See Online Manual</u>
Project location		Plymouth, MA	
Wind data source		Wind speed	
Nearest location for weather data		Meteorological Tower	See Weather Database
Annual average wind speed	m/s	6.7	
Height of wind measurement	m	80.0	3.0 to 100.0 m
Wind shear exponent	-	0.25	0.10 to 0.40
Wind speed at 10 m	m/s	4.0	
Average atmospheric pressure	kPa	101.0	60.0 to 103.0 kPa
Annual average temperature	°C	11	-20 to 30 °C

System Characteristics		Estimate	Notes/Range
Grid type	-	Central-grid	
Wind turbine rated power	kW	1650	<u>Complete Equipment Data sheet</u>
Number of turbines	-	1	
Wind plant capacity	kW	1,650	
Hub height	m	80.0	6.0 to 100.0 m
Wind speed at hub height	m/s	6.7	
Wind power density at hub height	W/m²	353	
Array losses	%	5%	0% to 20%
Airfoil soiling and/or icing losses	%	1%	1% to 10%
Other downtime losses	%	2%	2% to 7%
Miscellaneous losses	%	2%	2% to 6%

Annual Energy Production		Estimate Per Turbine	Estimate Total	Notes/Range
Wind plant capacity	kW	1,650	1,650	
	MW	1.650	1.650	
Unadjusted energy production	MWh	5,049	5,049	
Pressure adjustment coefficient	-	1.00	1.00	0.59 to 1.02
Temperature adjustment coefficient	-	1.02	1.02	0.98 to 1.15
Gross energy production	MWh	5,149	5,149	
Losses coefficient	-	0.90	0.90	0.75 to 1.00
Specific yield	kWh/m²	925	925	150 to 1,500 kWh/m ²
Wind plant capacity factor	%	32%	32%	20% to 40%
Renewable energy delivered	MWh	4,651	4,651	
	GJ	16,745	16,745	
•		_		Complete Cost Analysis shee

Version 3.2

© Minister of Natural Resources Canada 1997-2005.

RETScreen[®] Cost Analysis - Wind Energy Project

Type of analysis:	Feasibility]		Currency:		\$		Cost references:	None
Initial Costs (Credits)	Unit	Quantity		Unit Cost		Amount	Relative Costs	Quantity Range	Unit Cost Range
Feasibility Study									
Site investigation	p-d	0.0	\$	-	\$	-		-	-
Wind resource assessment	met tower	0	\$	-	\$	-		-	-
Environmental assessment	p-d	1.0	\$	35,000	\$	35,000		-	-
Preliminary design	p-d	1.0	\$	15,000	\$	15,000		-	-
Detailed cost estimate	p-d	1.0	\$	10,000	\$	10.000		-	-
GHG baseline study and MP	project	1	\$	-	\$	-		-	-
Report preparation	p-d	1.0	\$	10,000	\$	10,000		-	-
Project management	p-d	1.0	\$	5,000	\$	5,000		-	-
Travel and accommodation	p-trip	1	\$	1,000	\$	1,000		-	-
Other - Feasibility study	Cost	1	\$	-	\$	-		-	-
Sub-total:					\$	76,000	1.7%		
Development									
PPA negotiation	p-d	1.0	\$	50,000	\$	50,000		-	-
Permits and approvals	p-d	1.0	\$	120,000	\$	120,000		-	-
Land rights	project	0	\$	-	\$	-		-	-
Land survey	p-d	1.0	\$	20,000	\$	20,000		-	-
GHG validation and registration	project	0	\$	-	\$	-		-	-
Project financing	p-d	0.0	\$	-	\$	-		-	-
Legal and accounting	p-d	1.0	\$	120,000	\$	120,000		-	-
Project management	p-yr	1.00	\$	60,000	\$	60,000		-	-
Travel and accommodation	p-trip	1	\$	3,000	\$	3,000		-	-
Other - Development	Cost	0	\$	- 0,000	\$	-		-	-
Sub-total:		-	Ŧ	Ł	\$	373,000	8.3%		
Engineering					•	010,000	0.070		
Wind turbine(s) micro-siting	p-d	1.0	\$	15,000	\$	15,000		_	-
Mechanical design	p-d	1.0	\$	30,000	\$	30,000		_	-
Electrical design	p-d	1.0	\$	40,000	\$	40,000		_	-
Civil design	p-d	1.0	\$	45,000	\$	45,000		_	
Tenders and contracting	p-d	0.0	\$	40,000	\$	-0,000		_	
Construction supervision	p-yr	1.00	\$	65,000	\$	65,000		_	
Other - Engineering	Cost	0	\$	- 00,000	\$			-	-
Sub-total:		-	Ŧ	E	\$	195,000	4.4%		
Energy Equipment					•	,			
Wind turbine(s)	kW	1,650	\$	1,455	\$	2,400,000		_	-
Spare parts	%	3.0%	\$	2,400,000	\$	72,000		_	
Transportation	turbine	1	\$	190,000	\$	190,000		_	-
Other - Energy equipment	Cost	0	\$	-	\$	-		-	-
Sub-total:		-	Ŧ	Ł	\$	2,662,000	59.4%		
Balance of Plant					•	_,,	00.170		
Wind turbine(s) foundation(s)	turbine	1	\$	200,000	\$	200,000		-	-
Wind turbine(s) erection	turbine	1	\$	150,000	\$	150,000		-	-
Road construction	mi	0.25	\$	400,000	\$	100,000		-	-
Transmission line	mi	0.25	\$	400,000	\$	100,000		_	-
Substation	project	0	\$		Ψ \$			-	-
Control and O&M building(s)	building	1	\$	40,000	\$	40,000		-	-
Transportation	project	0	\$		\$			_	-
Other - Balance of plant	Cost	0	\$	-	\$	-		-	-
Sub-total:		-			\$	590,000	13.2%		
Miscellaneous					-	,			
Training	p-d	0.0	\$	-	\$	-		-	-
Commissioning	p-d	1.0	\$	20,000	\$	20,000		-	-
Contingencies	%	10%	\$		\$	391,600		-	-
Interest during construction	8.0%	12 month(s)	\$	4,307,600	\$	172,304		-	-
Sub-total:		(3)		,,	\$	583,904	13.0%		
Initial Costs - Total				=	\$	4,479,904	100.0%		
					*	.,			

Annual Costs (Credits)	Unit	Quantity	Unit Cost	Amount	Relative Costs	Quantity Range	Unit Cost Range
O&M							
Land lease	project	0	\$ -	\$ -		-	-
Property taxes	project	0	\$ -	\$ -		-	-
Insurance premium	project	1	\$ 10,000	\$ 10,000		-	-
Transmission line maintenance	%	2.0%	\$ 100,000	\$ 2,000		-	-
Parts and labour	kWh	4,651,295	\$ 0.005	\$ 24,000		-	-
GHG monitoring and verification	project	0	\$ -	\$ -		-	-
Community benefits	project	0	\$ -	\$ -		-	-
Travel and accommodation	p-trip	2	\$ 1,500	\$ 3,000		-	-
General and administrative	%	5%	\$ 39,000	\$ 1,950		-	-
Other - O&M	Cost	0	\$ -	\$ -		-	-
Contingencies	%	5%	\$ 40,950	\$ 2,048		-	-
Annual Costs - Total				\$ 42,998	100.0%		

Periodic Costs (Credits)		Period	Unit Cost	Amount	Interval Range	Unit Cost Range
Drive train	Cost	25 yr	\$ 250,000	\$ 250,000	-	-
Blades	Cost	25 yr	\$ 120,000	\$ 120,000	-	-
				\$ -	-	-
End of project life	Credit	-	\$ -	\$ -	<u>Go</u>	to GHG Analysis sheet

RETScreen[®] Greenhouse Gas (GHG) Emission Reduction Analysis - Wind Energy Project

Use GHG analysis sheet?	Yes
Potential CDM project?	No

 Background Information

 Global Warming Potential of GHG

 Project Information
 Global Warming Potential of GHG

 Project name
 Camelot A-1650 80 Meter
 Project capacity
 1.65 MW
 21
 tonnes CO₂ = 1 tonne CH₄
 (IPCC 1996)

 Project location
 Plymouth, MA
 Grid type
 Central-grid
 310
 tonnes CO₂ = 1 tonne N₂O
 (IPCC 1996)

Type of analysis: Standard

Base Case Electricity System (Baseline)

Fuel type	Fuel mix	CO ₂ emission factor	CH ₄ emission factor	N₂O emission factor	Fuel conversion efficiency	T & D losses	GHG emission factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{CO2} /MWh)
Coal	12.0%	94.6	0.0020	0.0030	35.0%	12.0%	1.117
Natural gas	33.0%	56.1	0.0030	0.0010	45.0%	12.0%	0.513
Nuclear	28.0%	0.0	0.0000	0.0000	30.0%		0.000
Large hydro	8.0%	0.0	0.0000	0.0000	100.0%		0.000
#6 oil	10.0%	77.4	0.0030	0.0020	30.0%		0.937
Wind	6.0%	0.0	0.0000	0.0000	100.0%		0.000
Solar	1.0%	0.0	0.0000	0.0000	100.0%		0.000
Biomass	1.0%	0.0	0.0320	0.0040	25.0%		0.028
Small hydro	1.0%	0.0	0.0000	0.0000	100.0%		0.000
Electricity mix	100%	109.4	0.0056	0.0028		5.4%	0.397

Proposed Case Electricity System (Wind Energy Project)

Fuel type	Fuel mix	CO ₂ emission factor	CH₄ emission factor	N ₂ O emission factor	Fuel conversion efficiency	T & D losses	GHG emission factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{CO2} /MWh)
Electricity system Wind	100.0%	0.0	0.0000	0.0000	100.0%	12.0%	0.000

GHG Emission Reduction Summary

	Base case GHG emission factor	Proposed case GHG emission factor	End-use annual energy delivered	Gross annual GHG emission reduction	GHG credits transaction fee	Net annual GHG emission reduction
	(tCO2/MWh)	(tCO2/MWh)	(MWh)	(t _{co2})	(%)	(t _{co2})
Electricity system	0.397	0.000	4,093	1,627	0.0%	1,627

Complete Financial Summary sheet

Version 3.2

© United Nations Environment Programme & Minister of Natural Resources Canada 2000 - 2005.

UNEP/DTIE and NRCan/CETC - Varennes

AAER A-1500 80 Meter

The following cost summary estimates have been calculated without the following assumptions:

- Site Investigation
- Wind Resource Assessment
- GHG Baseline Study and Monitoring Plan
- Land Rights
- GHG Validation and Registration
- Project financing
- Tenders and Contracting
- Substation(s)
- Training
- Land Lease
- Property Taxes
- GHG Monitoring and Verification
- Community Benefits

The following financial summaries have been calculated **using** the following assumptions:

- Feasibility studies expenses at 76,000
- Development expenses at \$318,000
- Engineering expenses at \$175,000
- The price of an AAER A-1500 turbine at \$2,300,000
- Transporting turbine and parts at \$175,000
- Foundation construction and design expenses at \$175,000.
- Turbine erection expenses at \$140,000
- Road construction expenses at \$100,000.
- Transmission line construction and expenses at \$100,000.
- Travel and accommodation during the initial development of the project set to \$4,000. Annual travel expenses are set to \$3,000.

*The values assumed in the following cost summaries are preliminary estimates and may not reflect the true current values of the cost analysis.

RETScreen[®] Energy Model - Wind Energy Project

Units: Metric

Site Conditions		Estimate	Notes/Range
Project name	Ca	amelot A-1500 80 Meter	<u>See Online Manual</u>
Project location		Plymouth, MA	
Wind data source		Wind speed	
Nearest location for weather data		Meteorological Tower	See Weather Database
Annual average wind speed	m/s	6.7	
Height of wind measurement	m	80.0	3.0 to 100.0 m
Wind shear exponent	-	0.25	0.10 to 0.40
Wind speed at 10 m	m/s	4.0	
Average atmospheric pressure	kPa	101.0	60.0 to 103.0 kPa
Annual average temperature	°C	11	-20 to 30 °C

System Characteristics		Estimate	Notes/Range
Grid type	-	Central-grid	
Wind turbine rated power	kW	1500	<u>Complete Equipment Data sheet</u>
Number of turbines	-	1	
Wind plant capacity	kW	1,500	
Hub height	m	80.0	6.0 to 100.0 m
Wind speed at hub height	m/s	6.7	
Wind power density at hub height	W/m²	353	
Array losses	%	5%	0% to 20%
Airfoil soiling and/or icing losses	%	1%	1% to 10%
Other downtime losses	%	2%	2% to 7%
Miscellaneous losses	%	2%	2% to 6%

Annual Energy Production		Estimate Per Turbine	Estimate Total	Notes/Range
Wind plant capacity	kW	1.500	1.500	Notes/Range
	MW	1,500	1,500	
Unadjusted energy production	MWh	4.340	4.340	
Pressure adjustment coefficient	-	1.00	1.00	0.59 to 1.02
Temperature adjustment coefficient	-	1.02	1.02	0.98 to 1.15
Gross energy production	MWh	4,427	4,427	
Losses coefficient	-	0.90	0.90	0.75 to 1.00
Specific yield	kWh/m²	859	859	150 to 1,500 kWh/m ²
Wind plant capacity factor	%	30%	30%	20% to 40%
Renewable energy delivered	MWh	3,998	3,998	
	GJ	14,395	14,395	
	8	-		Complete Cost Analysis sheet

Version 3.2

© Minister of Natural Resources Canada 1997-2005.

RETScreen[®] Cost Analysis - Wind Energy Project

Type of analysis:	Feasibility]		Currency:		\$		Cost references:	None
Initial Costs (Credits)	Unit	Quantity		Unit Cost		Amount	Relative Costs	Quantity Range	Unit Cost Range
Feasibility Study									
Site investigation	p-d	0.0			\$	-		-	-
Wind resource assessment	met tower	0			\$	-		-	-
Environmental assessment	p-d	1.0	\$	35,000	\$	35,000		-	-
Preliminary design	p-d	1.0	\$	15,000	\$	15,000		-	-
Detailed cost estimate	p-d	1.0	\$	10,000	\$	10,000		-	-
GHG baseline study and MP	project	1		,	\$	· -		-	-
Report preparation	p-d	1.0	\$	10,000	\$	10,000		-	-
Project management	p-d	1.0	\$	5,000	\$	5,000		-	-
Travel and accommodation	p-trip	1	\$	1,000	\$	1,000		-	-
Other - Feasibility study	Cost	0		,	\$	-		-	-
Sub-total:		•			\$	76,000	1.8%		
Development									
PPA negotiation	p-d	1.0	\$	50,000	\$	50,000		-	-
Permits and approvals	p-d	1.0	\$	100,000	\$	100,000		-	-
Land rights	project	1			\$	-		-	-
Land survey	p-d	1.0	\$	15,000	\$	15,000		-	-
GHG validation and registration	project	0			\$	-		-	-
Project financing	p-d	0.0			\$	-		-	-
Legal and accounting	p-d	1.0	\$	100,000	\$	100,000		-	-
Project management	p-yr	1.00	\$	50,000	\$	50,000		-	-
Travel and accommodation	p-trip	1	\$	3,000	\$	3,000		-	-
Other - Development	Cost	1		- ,	\$	-		-	-
Sub-total:					\$	318,000	7.5%		
Engineering									
Wind turbine(s) micro-siting	p-d	1.0	\$	10,000	\$	10,000		-	-
Mechanical design	p-d	1.0	\$	25,000	\$	25,000		-	-
Electrical design	p-d	1.0	\$	37,500	\$	37,500		-	-
Civil design	p-d	1.0	\$	42,500	\$	42,500		-	-
Tenders and contracting	p-d	1.0			\$	-		-	-
Construction supervision	p-yr	1.00	\$	60,000	\$	60,000		-	-
Other - Engineering	Cost	0			\$	-		-	-
Sub-total:					\$	175,000	4.1%		
Energy Equipment									
Wind turbine(s)	kW	1,500	\$	1,533	\$	2,300,000		-	-
Spare parts	%	3.0%	\$	2,300,000	\$	69,000		-	-
Transportation	turbine	1	\$	175,000	\$	175,000		-	-
Other - Energy equipment	Cost	0	\$	-	\$	-		-	-
Sub-total:					\$	2,544,000	60.3%		
Balance of Plant				175.000	•	475.000			
Wind turbine(s) foundation(s)	turbine	1	\$	175,000	\$	175,000		-	-
Wind turbine(s) erection	turbine	1	\$	140,000	\$	140,000		-	-
Road construction	mi	0.25	\$	400,000	\$	100,000		-	-
Transmission line	mi	0.25	\$	400,000	\$	100,000		-	-
Substation	project	0	\$	-	\$	-		-	-
Control and O&M building(s)	building	1	\$	40,000	\$	40,000		-	-
Transportation	project	0	\$	-	\$	-		-	-
Other - Balance of plant	Cost	0	\$	-	\$	-	10.001	-	-
Sub-total: Miscellaneous					\$	555,000	13.2%		
Training	p-d	0.0	\$		\$			_	_
Commissioning		1.0	э \$	20,000	э \$	20,000		-	-
Contingencies	p-d %	1.0		3,688,000	ъ \$	20,000 368,800		-	-
Interest during construction	% 8.0%	12 month(s)	\$\$	3,688,000 4,056,800	ъ \$	368,800 162,272			
Sub-total:	0.070	12 1101111(5)	Ψ	-,030,000	\$	551,072	13.1%	-	-
Initial Costs - Total				=	φ \$	4,219,072	100.0%		
initiai 50515 - 10tai					Ψ	7,213,012	100.0%		

Annual Costs (Credits)	Unit	Quantity	Unit Cost	Amount	Relative Costs	Quantity Range	Unit Cost Range
O&M							
Land lease	project	0	\$ -	\$ -		-	-
Property taxes	project	0	\$ -	\$ -		-	-
Insurance premium	project	1	\$ 9,500	\$ 9,500		-	-
Transmission line maintenance	%	2.0%	\$ 100,000	\$ 2,000		-	-
Parts and labour	kWh	3,998,486	\$ 0.006	\$ 22,000		-	-
GHG monitoring and verification	project	0	\$ -	\$ -		-	-
Community benefits	project	0	\$ -	\$ -		-	-
Travel and accommodation	p-trip	2	\$ 1,500	\$ 3,000		-	-
General and administrative	%	5%	\$ 36,500	\$ 1,825		-	-
Other - O&M	Cost	0	\$ -	\$ -		-	-
Contingencies	%	5%	\$ 38,325	\$ 1,916		-	-
Annual Costs - Total				\$ 40,241	100.0%		

eriodic Costs (Credits)		Period	Unit Cost	Amount	Interval Range	Unit Cost Range
Drive train	Cost	25 yr	\$ 250,000	\$ 250,000	-	-
Blades	Cost	25 yr	\$ 120,000	\$ 120,000	-	-
				\$ -	-	-
End of project life	Credit	-	\$ -	\$ -	<u>Go</u>	to GHG Analysis sheet

RETScreen® Greenhouse Gas (GHG) Emission Reduction Analysis - Wind Energy Project

Use GHG analysis sheet?	Yes
Potential CDM project?	No

 Background Information

 Global Warming Potential of GHG

 Project Information
 Global Warming Potential of GHG

 Project name
 Camelot A-1500 80 Meter
 Project capacity
 1.50 MW
 21
 tonnes CO₂ = 1
 tonne CH₄
 (IPCC 1996)

 Project location
 Plymouth, MA
 Grid type
 Central-grid
 310
 tonnes CO₂ = 1
 tonne N₂O
 (IPCC 1996)

Type of analysis: Standard

Base Case Electricity System (Baseline)

Fuel type	Fuel mix	CO ₂ emission factor	CH ₄ emission factor	N ₂ O emission factor	Fuel conversion efficiency	T & D losses	GHG emissio factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{CO2} /MWh)
Coal	12.0%	94.6	0.0020	0.0030	35.0%	12.0%	1.117
Natural gas	33.0%	56.1	0.0030	0.0010	45.0%	12.0%	0.513
Nuclear	28.0%	0.0	0.0000	0.0000	30.0%		0.000
Large hydro	8.0%	0.0	0.0000	0.0000	100.0%		0.000
#6 oil	10.0%	77.4	0.0030	0.0020	30.0%		0.937
Wind	6.0%	0.0	0.0000	0.0000	100.0%		0.000
Solar	1.0%	0.0	0.0000	0.0000	100.0%		0.000
Biomass	1.0%	0.0	0.0320	0.0040	25.0%		0.028
Small hydro	1.0%	0.0	0.0000	0.0000	100.0%		0.000
Electricity mix	100%	109.4	0.0056	0.0028		5.4%	0.397

Proposed Case Electricity System (Wind Energy Project)

Fuel type	Fuel mix	CO ₂ emission factor	CH₄ emission factor	N ₂ O emission factor	Fuel conversion efficiency	T & D losses	GHG emission factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{co2} /MWh)
Electricity system Wind	100.0%	0.0	0.0000	0.0000	100.0%	12.0%	0.000

GHG Emission Reduction Summary

	Base case GHG emission factor	Proposed case GHG emission factor	End-use annual energy delivered	Gross annual GHG emission reduction	GHG credits transaction fee	Net annual GHG emission reduction
	(tCO2/MWh)	(tCO2/MWh)	(MWh)	(t _{co2})	(%)	(t _{co2})
Electricity system	0.397	0.000	3,519	1,398	0.0%	1,398

Complete Financial Summary sheet

Version 3.2

© United Nations Environment Programme & Minister of Natural Resources Canada 2000 - 2005.

UNEP/DTIE and NRCan/CETC - Varennes

Vestas V82 80 Meter

The following cost summary estimates have been calculated without the following assumptions:

- Site Investigation
- Wind Resource Assessment
- GHG Baseline Study and Monitoring Plan
- Land Rights
- GHG Validation and Registration
- Project financing
- Tenders and Contracting
- Substation(s)
- Training
- Land Lease
- Property Taxes
- GHG Monitoring and Verification
- Community Benefits

The following financial summaries have been calculated **using** the following assumptions:

- Feasibility studies expenses at 76,000
- Development expenses at \$393,000
- Engineering expenses at \$212,500
- The price of a Vestas V82 turbine at \$2,700,000
- Transporting turbine and parts at \$200,000
- Foundation construction and design expenses at \$215,000.
- Turbine erection expenses at \$160,000
- Road construction expenses at \$100,000.
- Transmission line construction and expenses at \$100,000.
- Travel and accommodation during the initial development of the project set to \$4,000. Annual travel expenses are set to \$3,000.

RETScreen[®] Energy Model - Wind Energy Project

Units: Metric

lite Conditions	Estimate		Notes/Range	
Project name		Camelot V82 80 Meter	<u>See Online Manual</u>	
Project location		Plymouth, MA		
Wind data source		Wind speed		
Nearest location for weather data		Meteorological Tower	See Weather Database	
Annual average wind speed	m/s	6.7		
Height of wind measurement	m	80.0	3.0 to 100.0 m	
Wind shear exponent	-	0.25	0.10 to 0.40	
Wind speed at 10 m	m/s	4.0		
Average atmospheric pressure	kPa	101.0	60.0 to 103.0 kPa	
Annual average temperature	°C	11	-20 to 30 °C	

System Characteristics		Estimate	Notes/Range
Grid type	-	Central-grid	
Wind turbine rated power	kW	1650	<u>Complete Equipment Data sheet</u>
Number of turbines	-	1	
Wind plant capacity	kW	1,650	
Hub height	m	80.0	6.0 to 100.0 m
Wind speed at hub height	m/s	6.7	
Wind power density at hub height	W/m²	353	
Array losses	%	5%	0% to 20%
Airfoil soiling and/or icing losses	%	1%	1% to 10%
Other downtime losses	%	2%	2% to 7%
Miscellaneous losses	%	2%	2% to 6%

Annual Energy Production		Estimate Per Turbine	Estimate Total	Notes/Range
Wind plant capacity	kW	1,650	1,650	
	MW	1.650	1.650	
Unadjusted energy production	MWh	4,919	4,919	
Pressure adjustment coefficient	-	1.00	1.00	0.59 to 1.02
Temperature adjustment coefficient	-	1.02	1.02	0.98 to 1.15
Gross energy production	MWh	5,017	5,017	
Losses coefficient	-	0.90	0.90	0.75 to 1.00
Specific yield	kWh/m²	858	858	150 to 1,500 kWh/m ²
Wind plant capacity factor	%	31%	31%	20% to 40%
Renewable energy delivered	MWh	4,532	4,532	
	GJ	16,315	16,315	
		_		Complete Cost Analysis sheet

Version 3.2

© Minister of Natural Resources Canada 1997-2005.

RETScreen[®] Cost Analysis - Wind Energy Project

Type of analysis:	Feasibility]		Currency:		\$		Cost references:	None
Initial Costs (Credits)	Unit	Quantity		Unit Cost		Amount	Relative Costs	Quantity Range	Unit Cost Range
Feasibility Study									
Site investigation	p-d	0.0	\$	-	\$	-		-	-
Wind resource assessment	met tower	0	\$	-	\$	-		-	-
Environmental assessment	p-d	1.0	\$	35,000	\$	35,000		-	-
Preliminary design	p-d	1.0	\$	15,000	\$	15,000		-	-
Detailed cost estimate	p-d	1.0	\$	10,000	\$	10,000		-	-
GHG baseline study and MP	project	0	\$	-	\$	-		-	-
Report preparation	p-d	1.0	\$	10,000	\$	10,000		-	-
Project management	p-d	50.0	\$	100	\$	5,000		-	-
Travel and accommodation	p-trip	1	\$	1,000	\$	1,000		-	-
Other - Feasibility study	Cost	0	\$	-	\$	-		-	-
Sub-total:					\$	76,000	1.5%		
Development									
PPA negotiation	p-d	1.0	\$	50,000	\$	50,000		-	-
Permits and approvals	p-d	1.0	\$	120,000	\$	120,000		-	-
Land rights	project	0	\$	-	\$	-		-	-
Land survey	p-d	1.0	\$	20,000	\$	20,000		-	-
GHG validation and registration	project	0	\$	-	\$	-		-	-
Project financing	p-d	0.0	\$	-	\$	-		-	-
Legal and accounting	p-d	1.0	\$	130,000	\$	130,000		-	-
Project management	p-yr	1.00	\$	70,000	\$	70,000		-	-
Travel and accommodation Other - Development	p-trip Cost	1	\$ \$	3,000	\$ \$	3,000		-	-
Sub-total:	COSI	0	φ	-	φ \$	393.000	8.0%	-	-
Engineering					φ	393,000	0.0 %		
Wind turbine(s) micro-siting	p-d	1.0	\$	17,500	\$	17,500		_	_
Mechanical design	p-d p-d	1.0	\$	35,000	\$	35,000			
Electrical design	p-d	1.0	\$	45,000	\$	45,000		-	-
Civil design	p-d	1.0	\$	47,500	\$	47,500		-	-
Tenders and contracting	p-d	0.0	\$	-	\$	-		-	-
Construction supervision	p-yr	1.00	\$	67,500	\$	67,500		-	-
Other - Engineering	Cost	0	\$	-	\$	-		-	-
Sub-total:					\$	212,500	4.3%		
Energy Equipment									
Wind turbine(s)	kW	1,650	\$	1,636	\$	2,700,000		-	-
Spare parts	%	3.0%	\$	2,700,000	\$	81,000		-	-
Transportation	turbine	1	\$	200,000	\$	200,000		-	-
Other - Energy equipment	Cost	0	\$	-	\$	-		-	-
Sub-total:					\$	2,981,000	60.6%		
Balance of Plant			•	015 000	•	0.15.000			
Wind turbine(s) foundation(s)	turbine	1	\$	215,000	\$	215,000		-	-
Wind turbine(s) erection	turbine	1	\$	160,000	\$	160,000		-	-
Road construction	mi	0.25	\$	400,000	\$	100,000		-	-
Transmission line	mi	0.25	\$	400,000	\$	100,000		-	-
Substation	project	4	\$ \$	-	\$ \$	-		-	-
Control and O&M building(s) Transportation	building	1	э \$	40,000	ъ \$	40,000		-	-
Other - Balance of plant	project Cost		\$ \$		ъ \$	-		-	-
Sub-total:	0031		Ψ	-	۰ \$	615,000	12.5%	-	-
Miscellaneous					Ŧ	- 10,000	12.070		
Training	p-d				\$	-		-	-
Commissioning	p-d	1.0	\$	20,000	\$	20,000		-	-
Contingencies	%	10%	\$	4,297,500	\$	429,750		-	-
Interest during construction	8.0%	12 month(s)	\$	4,727,250	\$	189,090		-	-
Sub-total:				e	\$	638,840	13.0%		
Initial Costs - Total					\$	4,916,340	100.0%		
						•			

Annual Costs (Credits)	Unit	Quantity	Unit Cost	Amount	Relative Costs	Quantity Range	Unit Cost Range
O&M							
Land lease	project	0	\$ -	\$ -		-	-
Property taxes	project	0	\$ -	\$ -		-	-
Insurance premium	project	1	\$ 11,000	\$ 11,000		-	-
Transmission line maintenance	%	2.0%	\$ 100,000	\$ 2,000		-	-
Parts and labour	kWh	4,531,888	\$ 0.006	\$ 26,414		-	-
GHG monitoring and verification	project	0	\$ -	\$ -		-	-
Community benefits	project	0	\$ -	\$ -		-	-
Travel and accommodation	p-trip	2	\$ 1,500	\$ 3,000		-	-
General and administrative	%	5%	\$ 42,414	\$ 2,121		-	-
Other - O&M	Cost	0	\$ -	\$ -		-	-
Contingencies	%	5%	\$ 44,535	\$ 2,227		-	-
Annual Costs - Total				\$ 46,762	100.0%		

Periodic Costs (Credits)		Period	Unit Cost	Amount	Interval Range	Unit Cost Range
Drive train	Cost	25 yr	\$ 265,000	\$ 265,000	-	-
Blades	Cost	25 yr	\$ 125,000	\$ 125,000	-	-
				\$ -	-	-
End of project life	Credit	-	\$ -	\$ -	<u>Go</u>	to GHG Analysis sheet

RETScreen® Greenhouse Gas (GHG) Emission Reduction Analysis - Wind Energy Project

Use GHG analysis sheet? Potential CDM project?	? Yes No	Type of analysis:	Standard]	
Background Information Project Information Project name Project location	n Camelot V82 80 Meter Plymouth, MA	Project capacity Grid type	1.65 MW Central-grid	Global Warming Potential of GHG 21 tonnes $CO_2 = 1$ tonne CH_4 310 tonnes $CO_2 = 1$ tonne N_2O	(IPCC 1996) (IPCC 1996)

Base Case Electricity System (Baseline)

Fuel type	Fuel mix	CO ₂ emission factor	CH₄ emission factor	N ₂ O emission factor	Fuel conversion efficiency	T & D losses	GHG emissio factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{CO2} /MWh)
Coal	12.0%	94.6	0.0020	0.0030	35.0%	12.0%	1.117
Natural gas	33.0%	56.1	0.0030	0.0010	45.0%	12.0%	0.513
Nuclear	28.0%	0.0	0.0000	0.0000	30.0%		0.000
Large hydro	8.0%	0.0	0.0000	0.0000	100.0%		0.000
#6 oil	10.0%	77.4	0.0030	0.0020	30.0%		0.937
Wind	6.0%	0.0	0.0000	0.0000	100.0%		0.000
Solar	1.0%	0.0	0.0000	0.0000	100.0%		0.000
Biomass	1.0%	0.0	0.0320	0.0040	25.0%		0.028
Small hydro	1.0%	0.0	0.0000	0.0000	100.0%		0.000
Electricity mix	100%	109.4	0.0056	0.0028		5.4%	0.397

Proposed Case Electricity System (Wind Energy Project)

Fuel type	Fuel mix	CO ₂ emission factor	CH₄ emission factor	N₂O emission factor	Fuel conversion efficiency	T & D losses	GHG emission factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{co2} /MWh)
Electricity system Wind	100.0%	0.0	0.0000	0.0000	100.0%	12.0%	0.000

GHG Emission Reduction Summary

	Base case GHG emission factor	Proposed case GHG emission factor	End-use annual energy delivered	Gross annual GHG emission reduction	GHG credits transaction fee	Net annual GHG emission reduction
	(tCO2/MWh)	(tCO2/MWh)	(MWh)	(t _{co2})	(%)	(t _{co2})
Electricity system	0.397	0.000	3,988	1,585	0.0%	1,585

Complete Financial Summary sheet

Version 3.2

© United Nations Environment Programme & Minister of Natural Resources Canada 2000 - 2005.

UNEP/DTIE and NRCan/CETC - Varennes

Gamesa G80 78 Meter

The following cost summary estimates have been calculated without the following assumptions:

- Site Investigation
- Wind Resource Assessment
- GHG Baseline Study and Monitoring Plan
- Land Rights
- GHG Validation and Registration
- Project financing
- Tenders and Contracting
- Substation(s)
- Training
- Land Lease
- Property Taxes
- GHG Monitoring and Verification
- Community Benefits

The following financial summaries have been calculated **using** the following assumptions:

- Feasibility studies expenses at 76,000
- Development expenses at \$423,000
- Engineering expenses at \$230,000
- The price of an Gamesa G80 turbine at \$2,900,000
- Transporting turbine and parts at \$235,000
- Foundation construction and design expenses at \$240,000.
- Turbine erection expenses at \$180,000
- Road construction expenses at \$100,000.
- Transmission line construction and expenses at \$100,000.
- Travel and accommodation during the initial development of the project set to \$4,000. Annual travel expenses are set to \$3,000.

^{*}The values assumed in the following cost summaries are preliminary estimates and may not reflect the true current values of the cost analysis.

RETScreen[®] Energy Model - Wind Energy Project

Units: Metric

Site Conditions		Estimate	Notes/Range
Project name	Cam	elot G80 78 Meter 2000 kw	<u>See Online Manual</u>
Project location		Plymouth, MA	
Wind data source		Wind speed	
Nearest location for weather data		Meteorological Tower	See Weather Database
Annual average wind speed	m/s	6.7	
Height of wind measurement	m	80.0	3.0 to 100.0 m
Wind shear exponent	-	0.25	0.10 to 0.40
Wind speed at 10 m	m/s	4.0	
Average atmospheric pressure	kPa	101.0	60.0 to 103.0 kPa
Annual average temperature	°C	11	-20 to 30 °C

System Characteristics		Estimate	Notes/Range
Grid type	-	Central-grid	
Wind turbine rated power	kW	2000	<u>Complete Equipment Data sheet</u>
Number of turbines	-	1	
Wind plant capacity	kW	2,000	
Hub height	m	78.0	6.0 to 100.0 m
Wind speed at hub height	m/s	6.7	
Wind power density at hub height	W/m²	330	
Array losses	%	5%	0% to 20%
Airfoil soiling and/or icing losses	%	1%	1% to 10%
Other downtime losses	%	2%	2% to 7%
Miscellaneous losses	%	2%	2% to 6%

Annual Energy Production		Estimate Per Turbine	Estimate Total	Notes/Range
Wind plant capacity	kW	2,000	2,000	
	MW	2.000	2.000	
Unadjusted energy production	MWh	4,997	4,997	
Pressure adjustment coefficient	-	1.00	1.00	0.59 to 1.02
Temperature adjustment coefficient	-	1.02	1.02	0.98 to 1.15
Gross energy production	MWh	5,097	5,097	
Losses coefficient	-	0.90	0.90	0.75 to 1.00
Specific yield	kWh/m²	916	916	150 to 1,500 kWh/m ²
Wind plant capacity factor	%	26%	26%	20% to 40%
Renewable energy delivered	MWh	4,604	4,604	
	GJ	16,573	16,573	
•		-		Complete Cost Analysis shee

Version 3.2

© Minister of Natural Resources Canada 1997-2005.

NRCan/CETC - Varennes

RETScreen[®] Cost Analysis - Wind Energy Project

Type of analysis:	Feasibility]		Currency:		\$		Cost references:	None
Initial Costs (Credits)	Unit	Quantity		Unit Cost		Amount	Relative Costs	Quantity Range	Unit Cost Range
Feasibility Study								, ,	
Site investigation	p-d	0.0	\$	-	\$	-		-	-
Wind resource assessment	met tower	0	\$	-	\$	-		-	-
Environmental assessment	p-d	1.0	\$	35,000	\$	35,000		-	-
Preliminary design	p-d	1.0	\$	15,000	\$	15,000		-	-
Detailed cost estimate	p-d	1.0	\$	10,000	\$	10.000		-	-
GHG baseline study and MP	project	0	\$	-	\$	-		-	-
Report preparation	p-d	1.0	\$	10,000	\$	10,000		-	-
Project management	p-d	1.0	\$	5,000	\$	5,000		-	-
Travel and accommodation	p-trip	1	\$	1,000	\$	1,000		-	-
Other - Feasibility study	Cost	0	\$	-	\$	-		-	-
Sub-total:					\$	76,000	1.4%		
Development						,			
PPA negotiation	p-d	1.0	\$	50,000	\$	50,000		-	-
Permits and approvals	p-d	1.0	\$	130,000	\$	130,000		-	-
Land rights	project	0	\$	-	\$, -		-	-
Land survey	p-d	1.0	\$	20,000	\$	20,000		-	-
GHG validation and registration	project	0	\$	-	\$	-		-	-
Project financing	p-d	0.0	\$	-	\$	-		-	-
Legal and accounting	p-d	1.0	\$	140,000	\$	140,000		-	-
Project management	p-yr	1.00	\$	80,000	\$	80,000		-	-
Travel and accommodation	p-trip	1	\$	3,000	\$	3,000		_	-
Other - Development	Cost	0	\$		\$	5,000		-	-
Sub-total:		-	Ŧ	ł	\$	423,000	7.9%		
Engineering					Ŷ	420,000	1.070		
Wind turbine(s) micro-siting	p-d	1.0	\$	20,000	\$	20,000		_	-
Mechanical design	p-d	1.0	\$	40,000	\$	40,000		_	-
Electrical design	p-d	1.0	\$	50,000	\$	50,000		_	-
Civil design	p-d	1.0	\$	50,000	\$	50,000		_	
Tenders and contracting	p-d	0.0	\$	50,000	\$			_	
Construction supervision	p-yr	1.00	\$	70,000	\$	70,000		_	
Other - Engineering	Cost	0	\$	- 10,000	\$			-	-
Sub-total:		-	Ŧ	E	\$	230,000	4.3%		
Energy Equipment					•	_00,000	11070		
Wind turbine(s)	kW	2,000	\$	1,450	\$	2,900,000		_	-
Spare parts	%	3.0%	\$	2,900,000	\$	87,000		_	
Transportation	turbine	1	\$	235,000	\$	235,000		_	-
Other - Energy equipment	Cost	0	\$	- 200,000	\$	- 200,000		-	-
Sub-total:		-	Ŧ	ł	\$	3,222,000	60.5%		
Balance of Plant					•	0,222,000	001070		
Wind turbine(s) foundation(s)	turbine	1	\$	240,000	\$	240,000		-	-
Wind turbine(s) erection	turbine	1	\$	180,000	\$	180,000		-	-
Road construction	mi	0.25	\$	400,000	\$	100,000		_	-
Transmission line	mi	0.25	\$	400,000	\$	100,000		_	-
Substation	project	0	\$		Ψ \$	-		_	-
Control and O&M building(s)	building	1	\$	65,000	\$	65,000		_	
Transportation	project	0	\$	00,000	\$	-		_	
Other - Balance of plant	Cost	0	\$	-	\$	-		-	-
Sub-total:	0000	, v	Ψ		\$	685,000	12.9%		
Miscellaneous					÷	000,000	12.070		
Training	p-d	0.0	\$		\$	-		_	-
Commissioning	p-d	1.0	\$	20,000	գ Տ	20,000		-	-
Contingencies	μ-u %	1.0	\$		ф \$	465,600		-	-
Interest during construction	8.0%	12 month(s)	\$		ֆ \$	204,864		-	-
Sub-total:	0.070	12 1101111(3)	Ψ	5,121,000	\$	<u>690,464</u>	13.0%		
Initial Costs - Total				=	\$	5,326,464	100.0%		
					Ψ	3,320,404	100.076		

Annual Costs (Credits)	Unit	Quantity	Unit Cost	Amount	Relative Costs	Quantity Range	Unit Cost Range
O&M							
Land lease	project	0	\$ -	\$ -		-	-
Property taxes	project	0	\$ -	\$ -		-	-
Insurance premium	project	1	\$ 15,000	\$ 15,000		-	-
Transmission line maintenance	%	2.0%	\$ 100,000	\$ 2,000		-	-
Parts and labour	kWh	4,603,715	\$ 0.007	\$ 30,000		-	-
GHG monitoring and verification	project	0	\$ -	\$ -		-	-
Community benefits	project	0	\$ -	\$ -		-	-
Travel and accommodation	p-trip	2	\$ 1,500	\$ 3,000		-	-
General and administrative	%	5%	\$ 50,000	\$ 2,500		-	-
Other - O&M	Cost	0	\$ -	\$ -		-	-
Contingencies	%	5%	\$ 52,500	\$ 2,625		-	-
Annual Costs - Total				\$ 55,125	100.0%		

riodic Costs (Credits)		Period	Unit Cost	Amount	Interval Range	Unit Cost Range
Drive train	Cost	25 yr	\$ 300,000	\$ 300,000	-	-
Blades	Cost	25 yr	\$ 150,000	\$ 150,000	-	-
				\$ -	-	-
End of project life	Credit	-	\$ -	\$ -	Go	to GHG Analysis shee

RETScreen[®] Greenhouse Gas (GHG) Emission Reduction Analysis - Wind Energy Project

Yes No

Use GHG analysis sheet?
Potential CDM project?

 Background Information

 Global Warming Potential of GHG

 Project Information
 Global Warming Potential of GHG

 Project name
 Camelot G80 78 Meter 2000 kw
 Project capacity
 2.00 MW
 21
 tonnes CO₂ = 1 tonne CH₄
 (IPCC 1996)

 Project location
 Plymouth, MA
 Grid type
 Central-grid
 310
 tonnes CO₂ = 1 tonne N₂O
 (IPCC 1996)

Type of analysis: Standard

Base Case Electricity System (Baseline)

Fuel type	Fuel mix	CO ₂ emission factor	CH₄ emission factor	N ₂ O emission factor	Fuel conversion efficiency	T & D losses	GHG emissic factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{co2} /MWh)
Coal	12.0%	94.6	0.0020	0.0030	35.0%	12.0%	1.117
Natural gas	33.0%	56.1	0.0030	0.0010	45.0%	12.0%	0.513
Nuclear	28.0%	0.0	0.0000	0.0000	30.0%		0.000
Large hydro	8.0%	0.0	0.0000	0.0000	100.0%		0.000
#6 oil	10.0%	77.4	0.0030	0.0020	30.0%		0.937
Wind	6.0%	0.0	0.0000	0.0000	100.0%		0.000
Solar	1.0%	0.0	0.0000	0.0000	100.0%		0.000
Biomass	1.0%	0.0	0.0320	0.0040	25.0%		0.028
Small hydro	1.0%	0.0	0.0000	0.0000	100.0%		0.000
Electricity mix	100%	109.4	0.0056	0.0028		5.4%	0.397

Proposed Case Electricity System (Wind Energy Project)

Fuel type	Fuel mix	CO ₂ emission factor	CH₄ emission factor	N ₂ O emission factor	Fuel conversion efficiency	T & D losses	GHG emission factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{co2} /MWh)
Electricity system Wind	100.0%	0.0	0.0000	0.0000	100.0%	12.0%	0.000

GHG Emission Reduction Summary

	Base case GHG emission factor	Proposed case GHG emission factor	End-use annual energy delivered	Gross annual GHG emission reduction	GHG credits transaction fee	Net annual GHG emission reduction
	(tCO2/MWh)	(tCO2/MWh)	(MWh)	(t _{co2})	(%)	(t _{co2})
Electricity system	0.397	0.000	4,051	1,610	0.0%	1,610

Complete Financial Summary sheet

Version 3.2

© United Nations Environment Programme & Minister of Natural Resources Canada 2000 - 2005.

UNEP/DTIE and NRCan/CETC - Varennes

APPENDIX C Turbine Specifications and Equipment Data

AAER A-1650 80 Meter

RETScreen[®] Equipment Data - Wind Energy Project

Wind Turbine Characteristics		Estimate	Notes/Range
Wind turbine rated power	kW	1650	See Product Database
Hub height	m	80.0	6.0 to 100.0 m
Rotor diameter	m	80	7 to 80 m
Swept area	m²	5,027	35 to 5,027 m ²
Wind turbine manufacturer		AAER	
Wind turbine model		A-1650/80	
Energy curve data source	-	Standard	Rayleigh wind distribution
Shape factor	-	2.0	

Wind Turbine Production Data

	Wind speed	Power curve data	Energy curve data	
	(m/s)	(kW)	(MWh/yr)	
	0	0.0	-	
	1	0.0	-	
	2	0.0	-	
	3	0.0	479.8	
	4	64.0	1,348.1	
	5	157.0	2,619.0	
	6	293.0	4,068.0	
	7	478.0	5,468.7	
	8	726.0	6,671.8	
	9	1,039.0	7,597.6	
	10	1,429.0	8,224.3	
	11	1,651.0	8,573.6	
	12	1,651.0	8,691.2	
	13	1,651.0	8,630.2	
	14	1,651.0	8,440.4	
	15	1,651.0	8,163.6	
	16	1,651.0	-	
	17	1,651.0	-	
	18	1,651.0	-	
	19	1,651.0	-	
	20	1,651.0	-	
	21	-	-	
	22	-	-	
	23	-	-	
	24	-	-	
	25	-	-	
1,800 - 1,600 - 1,400 - (x) 1,200 - 1,000 -		Power and Energy Cur		10,000 9,000 8,000 7,000 6,000
(x) 1,200 - 1,000 - 800 - 600 - 400 - 200 - 0 40		8 10 12 14	16 18 20 22 24	 7,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000 0
		8 10 12 14 Wind speed (m/s)	10 10 20 22 24	<u>Return to</u>
				Energy Model shee

© Minister of Natural Resources Canada 1997-2005.

No. de document / Document Nr. : AQ-003-0023-EN

No. de révision / Revision Nr. : 3

Type de document / Type of document : Spécification / Specification Procédure / Procedure Calcul / Calculation Recommandation / Recommendation Manuel / Manual

Autre document / Other document
Document non-contrôlé / Uncontroled document

Classification :

Direction seulement / Only management
 Confidentiel / Confidential
 Interne / Internal
 Publique / Public

Auteur / Author : AAER Inc. – Martin Venne P.Eng

Produit par / Produced by : Stéphane Fournier

Approuvé par / Approved by : Robert Guillemette, P.Eng

Date : 2008-07-11

Destinataires / Recipients :

A-1650 Wind Turbine Generator

Main Specifications

AAER Inc. – Siège Social / Corporate Offices 80 boulevard de l'Aéroport, Bromont, Québec Canada J2L 1S9

Tél / Phone +1 450 534 5155 Sans Frais / Tollfree + 1 866 265 1045 Télécopie / Fax +1 450 534 5156 www.aaer.ca

Modèle / Template AQ-003 Ingénierie / Engineering

Révisions du document attaché Revisions of the attached document

No. de révision	Date	Par	Description des modifications	Révision approuvée par
Revision Nr.	Date	By :	Description of the changes	Revision approved by
0	2007-08-28	Martin Venne P.Eng	New document	Robert Guillemette, P.Eng
1	2008-02-12	SF	Update of the power curve	Robert Guillemette, P.Eng
2	2008-06-27	Mireille Focquet	Document updated according to new template and graphic standards – Update of the power curve	Robert Guillemette, P.Eng
3	2008-07-11	Stéphane Fournier	Power curve update for LM and AB. Details on blade class.	Robert Guillemette, P.Eng
4				9
5				
6				
7				

Avertissement important – Important Notice

AAER Inc. se réserve le droit de réviser et / ou de modifier toutes les informations contenues dans ce document sans préavis.

AAER Inc. has the right to revise and / or modify without prior notice any information included in this document

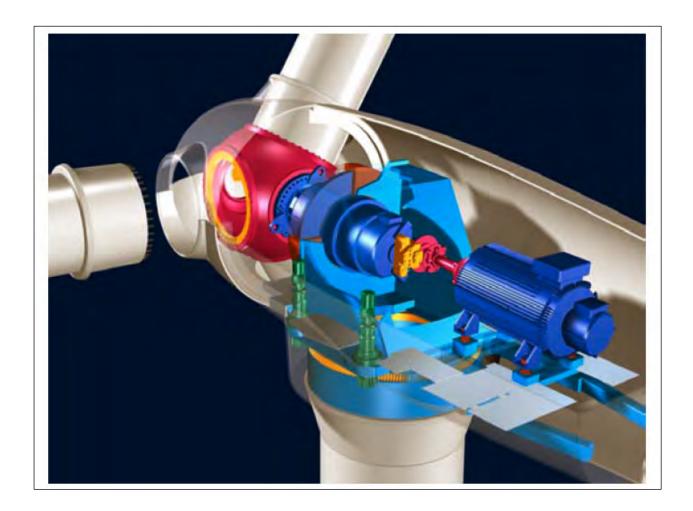
Table of contents

100	General	4
101	Overall View of the WEC	5
101	Overall View of the WEC	5
102	Rotor	6
103	Pitch System	6
104	Rotor Hub	6
105	Integral Drive Train	6
106	Coupling	7
107	Generator and Power Electronics	7
108	Mechanical Brake	7
109	Main Frame	7
110	Yaw System	7
111	Control System	7
112	Tower	7
113	Technical data	9
114	View of Nacelle	12
115	Power Curve, Power Coefficient & Thrust Coefficient	13
116	Cross section of the Nacelle	15

100 General

This document contains a description of the A-1650|77|70, its design and its main components.

Unless clearly required in the supply contract for the components, all statements made in this specification are valid without reservation. If individual items of the specification are dealt with differently in the contract, the remaining contents remain unaffected and continue to be valid without reservation.


The valid versions of standards, regulations and rules as well as the latest state of technological development are always decisive for the completion of works. If there is more than one standard, regulation or rule for one subject-matter, the strictest version must always be applied for the completion of works.

In the case of geometrical representations approved drawings have validity over a description of these dimensions.

Note: The A-1650-70/77 is based on the WT1650/77/70 from Windtec which is an upgrade of the PWE-1500-70/77 from Pfleiderer.

101 Overall View of the WEC

102 Rotor

The wind energy converter A-1650-70/77 has a three-bladed upwind rotor. Its rotational speed is limited by blade pitch control. The advantage of pitch control lies in the lower peak loads at high wind speeds. The wind energy converter is subject to substantially lower dynamic loads, especially at sites with high turbulence intensity (onshore). The rotor offers high operational reliability and longer service life with minimal maintenance effort due to its enhanced pitch-control system.

103 Pitch System

The blades can be turned out of the rotor plane by about 90 degrees and therefore act as aerodynamically brakes. During normal operation the pitch motors hold the rotor blades in a defined position via the ring gear (pitch bearing) mounted to the blade root. The aerodynamic brake is applied by varying the rotor blade pitch by means of motors. In the event of a fault (e.g. grid loss), the pitch motor is powered by a battery system and can therefore still control the pitch. Consequently the wind energy converter is completely safe ("fail safe design"). If one pitch drive cannot be activated (e.g. broken cable, broken power supply to hub), the other two blades can still be turned into feathering position. Furthermore the "safety lock"- system always allows the blades to turn into feathering position in case of overall pitch drive fault. Therefore the wind energy converter is automatically stopped at any time, even without any power supply to the hub.

104 Rotor Hub

The cast iron rotor hub is attached to the integral drive train with a flange. The three pitch drives are easily to be maintained as they are mounted within the hub aside the blade root flanges.

105 Integral Drive Train

The integral drive train is a patented WINDTEC development incorporating rotor shaft and gearbox as a unit. The hub is bolted with the rotor flange.

The gearbox is a three-stage gear with two planetary reduction stages and one parallel shaft gear stage. The helical-tooth planetary stages and the helical-tooth parallel-shaft stage are optimized with shape and tooth trace compensation. To compensate loads, the planetary stage sun wheels are self adjusting. The gearbox is forced lubricated. The gear oil temperature is monitored by a sensor and automatically cooled by a separate oil-air cooler with filter unit in the nacelle, in case the permissible oil temperature is exceeded. Labyrinth seals ensure a perfect seal and are wear-resistant.

The rotor controller cables are fed through the stationary hollow shaft into the hub. A rotor lock at the input shaft enables the drive train to be mechanically locked for maintenance purposes.

106 Coupling

The gearbox and the generator are linked by a flexible shaft which compensates alignment tolerances.

107 Generator and Power Electronics

The wind energy converter is equipped with a double-fed three-phase induction generator. The advanced power electronics (IGBT converter) ensures that the generator works with high efficiency over the entire speed range.

A heating winding is installed to prevent damage to the generator due to damp. In addition, there are sensors to monitor the temperature in the generator. The generator and the power electronics are cooled by a water-air heat exchanger.

108 Mechanical Brake

The mechanical brake is a disc brake fitted with a calliper and mounted at the highspeed shaft of the gearbox. When the brake is released, the hydraulic system is pressurized. To activate the brake, the oil pressure in the calliper is reduced by means of solenoid valves and the brake pads are pressed against the disc by springs. An intelligent braking system controls the braking sequence. The brake can be released by pressurizing the hydraulic circuit again.

109 Main Frame

The welded main frame transfers the loads from the integral drive train to the yaw system and holds the generator and control cabinet over the bolted cantilever.

110 Yaw System

The yaw system consists of an external ring gear which is bolted to the top flange of the tower plus a slide bearing. The yaw system is driven by four converter-fed electrical motors with a gearbox and a pinion mounted onto the base plate of the mainframe. The yaw motor brake keeps the wind energy converter in a fixed position until it has to be realigned with the actual wind direction. The motor brakes are released when the nacelle is turned. The yaw actuators also keep the nacelle in a fixed position, even at high eccentric wind loads.

111 Control System

The control system of the WEC is based on an industrial type PLC system. By use of the display in the nacelle cabinet i.e. the status of the WEC can be seen. The control system of the WEC is located in special cabinets, mounted in the hub and the nacelle.

112 Tower

A conical tubular steel tower with internally screwed top flange for high maintenance safety is designed for this wind energy converter. Inside the tower is a ladder for

accessing the nacelle, equipped with a climbing protection system to prevent a fall down. It also includes an optional elevator to facilitate technician access specially for higher heights. The tower contains also working platforms at the flange connections, resting platforms in each tower section and is equipped with working and emergency lightning. The steel door at the tower base is burglar proofed.

113 Technical data

Operating data Type, model Cut-in wind speed Rated wind speed Cut-out wind speed Calculation Guidelines Type class System life	 A-1650 3.5 m/s 12.0 m/s 20 m/s Germanischer Lloyd TC IIA 20 years
Temperatures	
Without cold weather package Ambient temperature during operation Ambient temperature without operation	
> Re-cut temperature (low)> Re-cut temperature (high)	-13 °C 28 °C
With cold weather package Ambient temperature during operation Ambient temperature without operation	-30 °C to 40 °C -40 °C to 40 °C
 > Re-cut temperature (low) > Re-cut temperature (high) 	 -28 °C 38 °C
Rotor	
Number of rotor blades Rotor axis Position relative to tower Rotor diameter Speed range Rated speed Direction of rotation (looking downwind) Power control method Rotor axis tilt angle	3 horizontal upwind 70m, 77m 11.3 rpm – 20 rpm 18.23 rpm Clockwise Blade pitching 4.5 deg
Rotor blade Blade length Chord length at blade tip Max chord length Blade root diameter	 34m, 37.5m 0.02 m 3.061 m 1885 mm

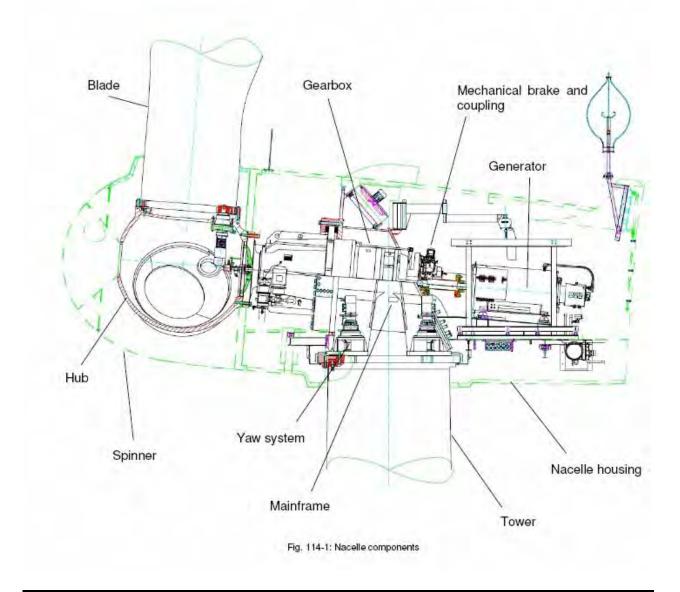
Sweep angle Cone angle Material Lightning conductor Manufacturer		0.6 deg 0 deg Epoxy glass fiber Integrated TC IIA LM Glassfiber 37.3P2 TC IIA AeroBlade AB37.3 TC IIA AAER 37.5 TC I AAER 34
Rotor blade pitch drive Maximum pitch rate limit Type of blade bearing Manufacturer pitch drives		9 deg/s Double row ball bearing WINDTEC
Drive train Rated drive torque Maximum static torque Type of gearing Transmission ratio Gear lubrication		930 kNm 3300 kNm planetary / parallel shaft gear 1 : ≈96 forced lubrication
Oil capacity Connection gear/generator		660 I flexible coupling
Supporting machine parts Hub type Hub material Mainframe type Mainframe material		rigid Cast iron EN-GJS-400-18U-LT Welded structure Steel S355
Braking systems Operational brake Type of construction Mechanical brake Activation		Blade pitching gear / servomotor disc brake passive
Generator and power electronics Generator type Converter type Rated power		Double fed induction generator IGBT, 4 quadrants 1650 kW
Rated voltage Power factor Torque control Generator manufacturer Converter manufacturer	·····	3~ / 690 V AC / 60 Hz Standard 1.0 Field vector control ELIN Motoren Gmbh AAER/Windtec

Type of construction	 closed
Material	 Polyester resin / Glass fiber

Yaw system

Type of wind direction alignment	 active
Type of yaw bearing	 slide bearing
Drive unit	 gear motor
Number of drive unit	 4
Brake	 friction in the slide bearing
	plus motor brake

Control system


Type of construction	 PLC, free programmable
Remote monitoring	 by modem
Manufacturer	 WINDTEC

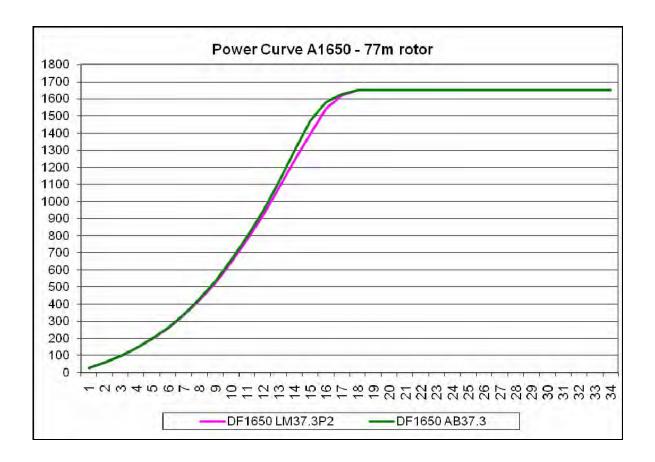
Tower

Type of construction	 conical tubular steel tower
Tower height	 65m, 80m, 100m
Corrosion protection	 protective paint

114 View of Nacelle

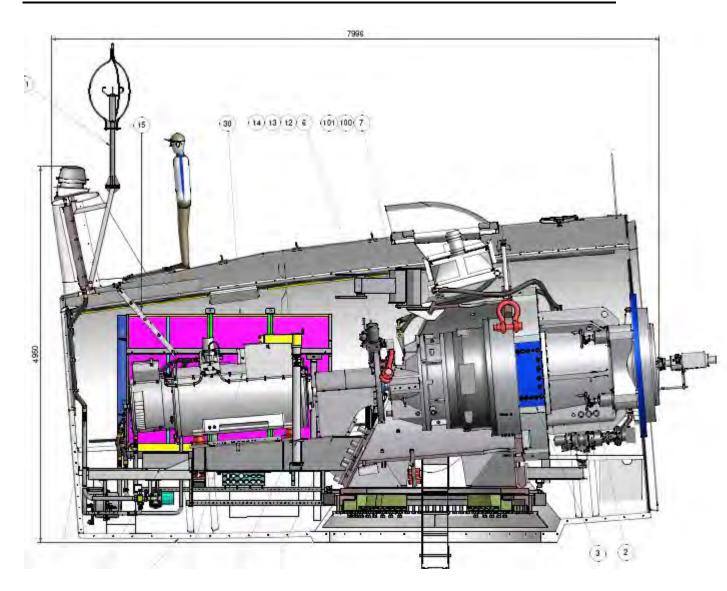
115 Power Curve, Power Coefficient & Thrust Coefficient

A-1650 / 77 Power data for Air density of 1,225 kg/m³


A1650 LM37.3P2

A1650 AB37.3

wind speed	el. Power		
[m/s]	[kW]	сТ	сР
3,5	26	0,376	0,831
4,0	57	0,431	0,832
4,5	95	0,461	0,822
5,0	141	0,476	0,804
5,5	195	0,479	0,806
6,0	258	0,479	0,793
6,5	334	0,479	0,794
7,0	422	0,479	0,795
7,5	525	0,479	0,796
8,0	642	0,479	0,797
8,5	774	0,479	0,798
9,0	919	0,478	0,801
9,5	1075	0,474	0,787
10,0	1237	0,467	0,748
10,5	1396	0,454	0,723
11,0	1541	0,439	0,681
11,5	1620	0,408	0,569
12,0	1651	0,362	0,476
12,5	1651	0,321	0,406
13,0	1651	0,285	0,353
13,5	1651	0,255	0,310
14,0	1651	0,228	0,275
14,5	1651	0,205	0,246
15,0	1651	0,186	0,221
15,5	1651	0,168	0,200
16,0	1651	0,153	0,181
16,5	1651	0,139	0,165
17,0	1651	0,127	0,151
17,5	1651	0,117	0,139
18,0	1651	0,107	0,128
18,5	1651	0,099	0,118
19,0	1651	0,091	0,109
19,5	1651	0,084	0,101
20,0	1651	0,078	0,094


wind speed	el. Power		сТ	сР
[m/s]	[kW]	20		
3,5		28	0,376	0,831
4,0		58	0,431	0,832
4,5		97	0,461	0,822
5,0		144	0,476	0,804
5,5		199	0,479	0,806
6,0		264	0,479	0,793
6,5		341	0,479	0,794
7,0		132	0,479	0,795
7,5		537	0,479	0,796
8,0		558	0,479	0,797
8,5		793	0,479	0,798
9,0		943	0,478	0,801
9,5		112	0,474	0,787
10,0		294	0,467	0,748
10,5		471	0,454	0,723
11,0	15	579	0,439	0,681
11,5	16	625	0,408	0,569
12,0	16	651	0,362	0,476
12,5	16	651	0,321	0,406
13,0	16	651	0,285	0,353
13,5	16	651	0,255	0,310
14,0	16	651	0,228	0,275
14,5	16	651	0,205	0,246
15,0	16	651	0,186	0,221
15,5	16	651	0,168	0,200
16,0	16	651	0,153	0,181
16,5	16	651	0,139	0,165
17,0	16	651	0,127	0,151
17,5	16	651	0,117	0,139
18,0	16	651	0,107	0,128
18,5	16	651	0,099	0,118
19,0	16	651	0,091	0,109
19,5		651	0,084	0,101
20,0	16	651	0,078	0,094

116 Cross section of the Nacelle

No. de document / Document Nr. : AQ-003-0076-EN

No. de révision / Revision Nr. : 0

Type de document / Type of document : Spécification / Specification

Spécification / Specification
 Procédure / Procedure
 Calcul / Calculation
 Recommandation / Recommendation
 Manuel / Manual
 Autre document / Other document
 Document non-contrôlé / Uncontroled document

Classification:

Direction seulement / Only management
 Confidentiel / Confidential
 Interne / Internal
 Publique / Public

Auteur / Author : AAER Inc.

Produit par / Produced by : Philippe Terrier, ing.jr

Approuvé par / Approved by : Robert Guillemette, ing

Date : 2008-08-10

Destinataires / Recipients : Sales

> AAER Inc. – Siège Social / Corporate Offices 80 boulevard de l'Aéroport, Bromont, Québec Canada J2L 1S9

Tél / Phone +1 450 534 5155 Sans Frais / Tollfree + 1 866 265 1045 Télécopie / Fax +1 450 534 5156 www.aaer.ca

Modèle / Template AQ-003 Ingénierie / Engineering

Power curve

A-1650 - 80

Révisions du document attaché Revisions of the attached document

No. de révision	Date	Par	Description des modifications	Révision approuvée par
Revision Nr.	Date	By :	Description of the changes	Revision approved by
0	2008-08-10	Philippe Terrier	New document	Robert Guillemette, Ing.
1				Julia
2				
3				
4				
5				
6				
7				

Avertissement important – Important Notice

AAER Inc. se réserve le droit de réviser et / ou de modifier toutes les informations contenues dans ce document sans préavis.

AAER Inc. has the right to revise and / or modify without prior notice any information included in this document

Turbine: A-1650 Rotor size: 80 meters Wind class: TCIII (maximum average speed: 7.5 m/s

A-1650 / Power (kW)		
Wind Speed (m/s)	Air density : 1.225kg/m3)	
1	0	
2	0	
3	0	
3,5	30	
4	64	
4,5	106	
5	157	
5,5	219	
6	293	
6,5	378	
7	478	
7,5	594	
8	726	
8,5	873	
9	1 039	
9,5	1 225	
10	1 429	
10,5	1 581	
11	1 651	
11,5	1 651	
12	1 651	
20	1 651	

AAER A-1500 80 Meter

RETScreen[®] Equipment Data - Wind Energy Project

Wind Turbine Characteristics		Estimate	Notes/Range
Wind turbine rated power	kW	1500	See Product Database
Hub height	m	80.0	6.0 to 100.0 m
Rotor diameter	m	77	7 to 80 m
Swept area	m²	4,657	35 to 5,027 m ²
Wind turbine manufacturer		AAER	
Wind turbine model		1500k	
Energy curve data source	-	Standard	Rayleigh wind distribution
Shape factor	-	2.0	

Wind Turbine Production Data

	Wind speed	Power curve data	Energy curve data	
-	(m/s)	(kW)	(MWh/yr)	
	0	0.0	-	
	1	0.0	-	
	2	0.0	-	
	3	0.0	363.6	
	4	40.0	1,083.7	
	5	118.0	2,178.5	
	6	232.0	3,458.2	
	7	395.0	4,717.8	
	8	608.0	5,814.6	
	9	887.0	6,668.9	
	10	1,225.0	7,255.7	
	11	1,450.0	7,591.6	
	12	1,500.0	7,716.5	
	13	1,500.0	7,678.0	
	14	1,500.0	7,520.9	
	15	1,500.0	7,283.2	
	16	1,500.0	-	
	17	1,500.0	-	
	18	1,500.0	-	
	19	1,500.0	-	
	20	1,500.0	-	
	21	0.0	-	
	22	0.0	-	
	23	0.0	-	
	24	0.0	-	
	25	0.0	-	
1,600 L		Power and Energy Cur		9,000
1,400 -			<u>* * * * *</u>	8,000
1,200				7,000 😭
\$				6,000
र् <u>ष</u> ्ट 1,000 -				5,000 ×
- 008 š)			
() 1,000 - 1,000 - 1,000 - 1,000 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	↓			+ 7,000 + 6,000 - 5,000 + 4,000 - 3,000 - 3,000
000		/		
400 -	/ /	<u>K</u>		2,000
200 -				- 1,000
o 🛓			· · · · · · · · · · · · · · · · · · ·	
0	2 4 6	8 10 12 14 Wind speed (m/s)	16 18 20 22 24	
				<u>Return to</u> <u>Energy Model sheet</u>

NRCan/CETC - Varennes

A-1500

1500 kW Wind Turbine Advanced technologies for high performance

A breath of fresh AAER www.aaer.ca

A-1500 Wind Turbine

High performance resulting from:

- Maximum operating reliability through multiple redundant pitch systems.
- Optimized variable speed system: An intelligent torque control ensuring constantly high power output.
- Compact and robust power unit for a longer durability.
- Speed and torque controlled drive train to avoid unnecessary stress on components.
- Maximum availability through a continuous and sophisticated decentralized control system.
- Germanischer Lloyld certified: High standard achievement.

General description

The A-1500 is a three-bladed, horizontal axis wind turbine that was specifically developed for an efficient utilization of wind energy at onshore locations. It has an optimized variable speed system and full span pitch control. This means that it can be operated at optimum aerodynamic efficiency throughout the whole operational range. At wind speed of 12.0 m/s the machine reaches its rated output. The combination of both electrical torque control and pitch control allows the wind turbine to be operated from 12.0 through 25.0 m/s with an almost constant power output.

The A-1500 also features a specially configured power unit where the rotor bedding and rotor form a compact unit. Through this integrated design, the power unit is rigid and far less susceptible to vibrations.

Technical description*

Rotor

Diameter, m (see note 1) Swept area, m² Rotational speed, rpm Wind class Number of rotor blades Power regulation Pitch system type

Brake System

Primary braking system Service / Emergency brake

Tower

Hub Height, m

Generator

Type of generator Rated power, kW Rated voltage, V Frequency, Hz Rated power Output, kVA Type of inverter Power factor (cos ø) Grid soft start connection Harmonic Distorsion

Gearbox

Type of gearbox

Control System Type of construction

Yaw System

Type of bearing Type of drive Number of drive units 70 / 77 3.848 / 4.657 11.0-22.0 / 9.7-19.0 I-II / II-III 3 Pitch Gearbox & servo motor

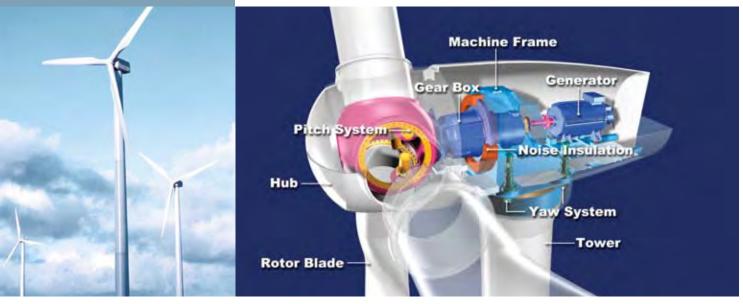
Full span blade feathering Disk brake

65, 80

Wound rotor induction generator 1500 690 50 or 60 1670 IGBT, 4-quadrant Controllable Converter controlled Imperceptible

Planetary & Helical

PLC, free programmable


Sliding bearing Gear motor 4

Note 1: The A-1500 is also available with a 64m rotor. Please contact AAER for further technical information.

*All specifications subject to change without notice. Please contact AAER for complete and latest technical specification. -----

A-1500: A Powerful Wind Turbine!

Wind Turbine mechanical scheme

v [m/s]	Rotor 70 m	Rotor 77 m
1	0	0
2	0	0
3	0	0
4	34	40
5	99	118
6	193	232
7	329	395
8	507	608
9	739	887
10	1021	1225
11	1334	1450
12	1500	1500
13	1500	1500
14	1500	1500
15	1500	1500
16	1500	1500
17	1500	1500
18	1500	1500
19	1500	1500
20	1500	1500
21	1500	-
22	1500	-
23	1500	-
24	1500	-
25	1500	-
Cut-in	3.0 m/s	3,0 m/s
Cut-out	25.0 m/s	20.0 m/s

Power curve A-1500 Legend Air-density: 1,225 kg/m³ A-1500-70 : ____ A-1500-77 : _____ 1600 1500 1400 1300 1200 ≥ 1200 700 600 500 400 300 200 100 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 Wind speed in m/s

Typical power curve. All data according to our best knowledge and subject to change.

AAER Inc. (TSXV: AAE)

Head office and plant 80, boulevard de l'Aéroport Bromont, Québec Canada, J2L 1S9 T: +1.450.534.5155 F: +1.450.534.5156 Toll free Fax: +1.866.265.1045 (North America only) info@aaer.ca

AAER Inc.

 Offices

 530-14, Place du commerce

 Montréal, Québec

 Canada H3E 1T5

 T +1.514.448.5155

 F +1.514.448.5156

 Toll free Fax: +1.866.265.1045

 (North America only)

 info@aaer.ca

AAER USA

4801 Woodway Drive Suite 300 East Houston, Texas 77056 United States **T** +1.866.448.5155 **F** +1.866.265.1045 info@aaer.ca

AAER Europe

6 Avenue Neil Armstrong 33692 Mérignac Cedex France **T** +33 5.56.18.11.76 **F** +33 5.56.18.91.11 info@aaer.ca

Vestas V-82 80 Meter

RETScreen[®] Equipment Data - Wind Energy Project

Wind Turbine Characteristics		Estimate	Notes/Range
Wind turbine rated power	kW	1650	See Product Database
Hub height	m	80.0	6.0 to 100.0 m
Rotor diameter	m	82	7 to 80 m
Swept area	m²	5,281	35 to 5,027 m ²
Wind turbine manufacturer		Vestas	
Wind turbine model		Vestas V82-1.65 MW	
Energy curve data source	-	Standard	Rayleigh wind distribution
Shape factor	-	2.0	

Wind Turbine Production Data

	Wind speed (m/s)	Power curve data (kW)	Energy curve data (MWh/yr)	
Г	0	-	-	
	1	-	-	
	2	-	-	
	3	0.0	426.4	
	4	28.0	1,300.9	
	5	144.0	2,553.9	
	6	309.0	3,963.6	
	7	511.0	5,328.3	
	8	758.0	6,509.1	
	9	1,017.0	7,425.5	
	10	1,285.0	8,052.1	
	11	1,504.0	8,406.8	
	12	1,637.0	8,533.0	
	13	1,650.0	8,482.0	
	14	1,650.0	8,302.6	
-	15	1,650.0	8,036.0	
	16	1,650.0	-	
	17	1,650.0	-	
	18	1,650.0	-	
	19	1,650.0	-	
	20	1,650.0	-	
	21	0.0	-	
	22	0.0	-	
	23	0.0	-	
	24	0.0	-	
	25	0.0	-	
1,800 1,600 1,400 (M) 1,200 1,000 1,000 800 600 400		Power and Energy Cur Power Energy		9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000
	2 4 6	8 10 12 14 1 Wind speed (m/s)	16 18 20 22 24	Return to Energy Model sheet

© Minister of Natural Resources Canada 1997-2005.

NRCan/CETC - Varennes

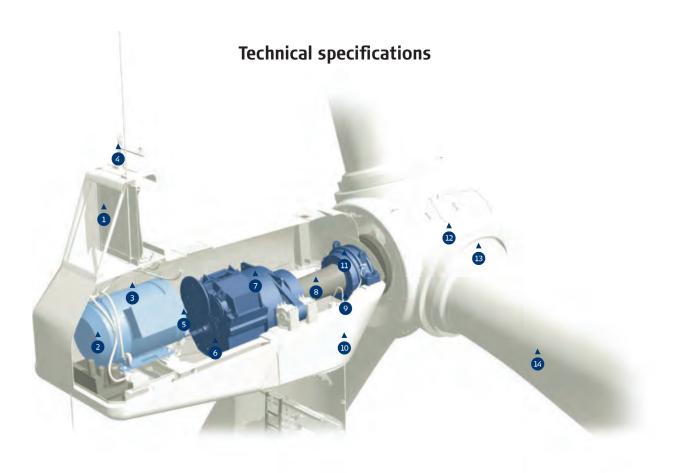
V82-1.65 MW Creating more from less

Optimised for low and medium winds

With its large rotor and powerful generator, the V82 is an excellent performing turbine for sites with low and medium wind conditions. Our hydraulic Active-Stall® technology ensures that the rotor gathers the maximum power from the prevailing wind, while minimising loads and controlling output. Active-Stall® provides failsafe protection in all conditions and, above its rated wind speed, maintains a steady output of 1.65 MW. With the V82, we have designed a wind turbine that offers unparalleled performance at a cost-effective price.

Grid compliance

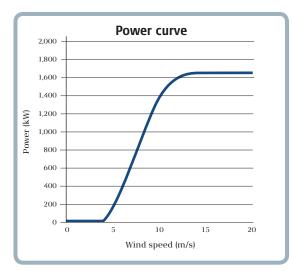
As wind turbines capture more of the electricity market each year, they have an increasingly significant role to play in grid management. Fortunately, the V82 meets most grid demands, and with the installation of our advanced grid compliance system, the V82 will actually help stabilise the grid. The turbine can run at full capacity during grid disturbances. Vestas grid support features full load and static phase compensation to enhance reactive power regulation and thus keep the power factor in range. Moreover, our grid support provides continuous active and reactive power regulation to maintain voltage balance in the grid, as well as fault ride-through in the event of disturbances.

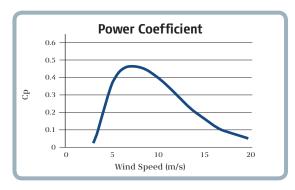

High reliability

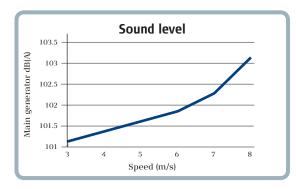
Det Norske Veritas (DNV) has certified the V82 as meeting the strictest standards in the wind industry. Aided by a simple design, which makes service and maintenance easier than most other turbines in the megawatt class, it has a high degree of operational availability. In addition, the nacelle is based on the thoroughly tested design of previous models. To date, more than 1,400 wind turbines featuring this platform design have been installed on sites with conditions ranging from arctic to tropical.

Proven Performance

Wind power plants require substantial investments, and the process can be very complex. To assist in the evaluation and purchasing process, Vestas has identified three factors that are critical to wind turbine quality: energy production, power quality and sound level.


We spend months testing and documenting these performance areas for all Vestas turbines. When we are finally satisfied, we ask an independent testing organisation to verify the results – a practice we call Proven Performance. At Vestas we do not just talk about quality. We prove it.





 $\label{eq:example} Example \ of \ tower \ internal \ configuration.$

Rotor

 Diameter:
 82 m

 Area swept:
 5,281 m²

 Nominal revolutions:
 14.4 rpm

 Number of blades:
 3

 Power regulation:
 Active-Stall®

 Air brake:
 Full blade pitch l hydraulic pitch c

14.4 rpm 3 Active-Stall® Full blade pitch by three separate hydraulic pitch cylinders.

Tower

50Hz, 230V: 60Hz, 110V:

Hub height (approx.) 78 m Hub height (approx.) 70 m, 80 m

5 m/s m/s m/s

Operational data

Cut- in wind speed: 3.	
Nominal wind speed: 1	3
Cut-out wind speed	
(10 minutes): 20	D

Generator

Type: Nominal output: Operational data: Asynchronous water cooled 1,650 kW 50/60 Hz 690/600V

Planetary/helical stages

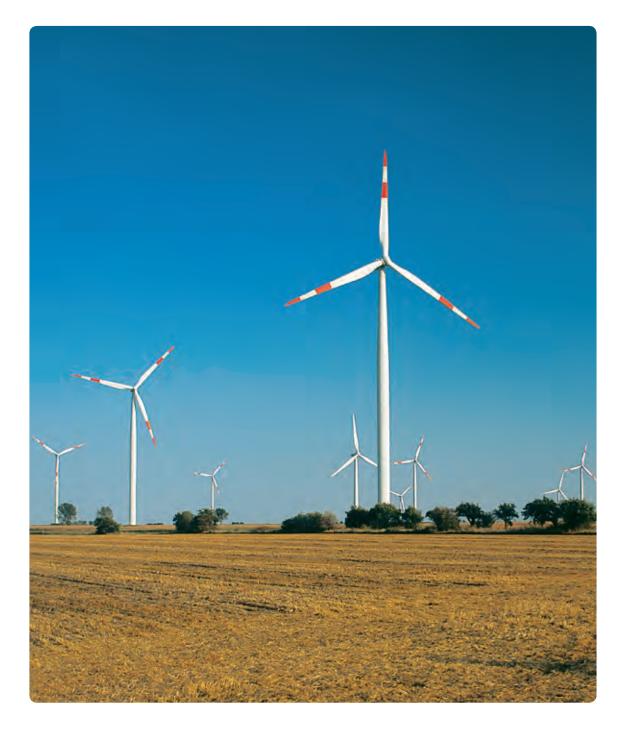
Gearbox

Type:

Control

Туре:

Microprocessor-based monitoring of all turbine functions with the option of remote monitoring. Output regulation and optimisation via Active-Stall[®].


Weight

Nacelle: Rotor:	52 t 43 t
Towers: 50Hz, 230V Hub height: 78 m	IEC IIA 115 t
60Hz, 110V Hub height: 70 m 80 m	IEC IIA 105 t 125 t

 $t = metric \ tonnes.$

All specifications subject to change without notice.

Creating more from less

With the V82 wind turbine, Vestas has created a turbine well suited for large wind farms, where grid compliance issues are solved at the substation level. This means that investments in grid equipment at the turbine level can be avoided.

The V82 is an extremely competitive turbine in its class in areas with low and medium winds. A stall-

regulated wind turbine, it has been optimised for sites with an average wind speed of just 6.5 m/s at hub height, while a breeze of as little as 3.5 m/s is all that is needed to start production. The V82 operates in ambient temperatures ranging from -30 to +40 celsius degrees.

Vestas Wind Systems A/S Alsvej 21 8900 Randers Denmark Tel. +45 97 30 00 00 Fax +45 97 30 00 01 vestas@vestas.com www.vestas.com

To see a complete list of our sales and service units, visit www.vestas.com

Gamesa G80 78 Meter

RETScreen[®] Equipment Data - Wind Energy Project

Wind Turbine Characteristics		Estimate	Notes/Range
Wind turbine rated power	kW	2000	See Product Database
Hub height	m	78.0	6.0 to 100.0 m
Rotor diameter	m	80	7 to 80 m
Swept area	m²	5,027	35 to 5,027 m ²
Wind turbine manufacturer		Gamesa	
Wind turbine model		G80 2000	
Energy curve data source	-	Custom	Weibull wind distribution
Shape factor	-	2.1	1.0 to 3.0

Wind Turbine Production Data

	Wind speed	Power curve data	Energy curve data	
	(m/s)	(kW)	(MWh/yr)	
	0	0.0	-	
	1	0.0	-	
	2	0.0	-	
	3	0.0	435.1	
	4	66.3	1,232.6	
	5	152.0	2,451.1	
	6	280.0	3,953.2	
	7	457.0	5,540.0	
	8	690.0	7,055.2	
	9 10	978.0	8,407.6	
	11	1,296.0	9,547.3	
	12	1,598.0 1,818.0	10,447.0 11,098.4	
	12			
	13	1,935.0 1,980.0	11,511.3 11,710.1	
	14	1,995.0	11,728.0	
	16	1,995.0	11,720.0	
	17	2,000.0	-	
	18	2,000.0	-	
	19	2,000.0		
	20	2,000.0		
	20	2,000.0		
	22	2,000.0	_	
	23	2,000.0		
	24	2,000.0		
	25	2,000.0	- -	
2,500 -		Power and Energy Cur Power Energy		14,000
2,000 -				12,000
				10,000
(K) 1,500 - 000 -				10,000 8,000 6,000 4 000
on 1,000 -	,			6,000 b
	l de la companya de l			4,000 u
500 -	مر کر	4		2,000
0				
0) 2 4 6	8 10 12 14 1 Wind speed (m/s)	6 18 20 22 24	1 0
				<u>Return to</u> Energy Model sh

© Minister of Natural Resources Canada 1997-2005.

NRCan/CETC - Varennes

Gamesa G80-2.0 MW

1

Gamesa 🌀

Gamesa, G

Benefits

Maximum unit power with excellent performance for high winds

- Pitch and variable speed technology to maximize energy production.
- Production of lighter blades using fiberglass and prepreg method.
- Compliance with the main international Grid Codes.
- Aerodynamic design and Gamesa NRS[®] control system to minimize noise emissions.
- Gamesa SGIPE: Remote monitoring and control system with Web access.

G80-2.0 MW

Rotor

Diameter	80 m
Swept area	5,027 m ²
Rotational speed	9.0 - 19.0 rpm
Rotational direction	Clock Wise (front view)
Weight (incl. Hub)	Approx. 38 T
Top head mass	Approx. 108 T

Blades

Number of blades	3
Length	39 m
Airfoils	NACA 63.XXX + FFA-W3
Material	Glass fiber reinforced with epoxy resin
Total blade weight	6,500 kg

Tubular Tower

Modular type	Height	Weight
3 sections	60 m	127 T
3 sections	67 m	145 T
4 sections	78 m	201 T
5 sections	100 m	283 T

Ge	arbox
Туре	1 planetary stage / 2 parallel stages
Ratio	1:100.5 (50 Hz) 1:120.5 (60 Hz)
Cooling	Oil pump with oil cooler
Oil heater	2.2 kW

Generator 2.0 MW

Туре	Doubly-fed machine
Rated power	2.0 MW
Voltage	690 V ac
Frequency	50 Hz / 60 Hz
Protecction class	IP 54
Number of poles	4
Rotational speed	900:1,900 rpm (rated 1,680 rpm) (50 Hz) 1,080:2,280 rpm (rated 2,016 rpm) (60 Hz)
Rated Stator Current	1,500 A @ 690 V
Power factor (standard)	0.98 CAP - 0.96 IND at partial loads and 1 at nominal power.*
Power factor (optional)	0.95 CAP - 0.95 IND throughout the power range.*

 ${\color{black}{\star}}$ Power factor at generator output terminals, at low voltage side before transformer input terminals.

Mechanical design

Drive train with main shaft supported by two spherical bearings that transmit the side loads directly to the frame by means of the bearing housing. This prevents the gearbox from receiving additional loads, reducing malfunctions and facilitating its service.

Brake

Aerodynamic primary brake by means of full-feathering blades. In addition, a hydraulically-activated mechanical disc brake for emergencies is mounted on the gearbox high speed shaft.

Lightning protection

The Gamesa G80-2.0 MW wind turbine generator uses the "total lightning protection" system, in accordance with standard IEC 61024-1. This system conducts the lightning from both sides of the blade tip down to the root joint and from there across the nacelle and tower structure to the grounding system located in the foundations. As a result, the blade and sensitive electrical components are protected from damage.

Control System

The Generator is a doubly fed machine (DFM), whose speed and power is controlled through IGBT converters and PWM (Pulse Width Modulation) electronic control. **Benefits:**

- >> Active and reactive power control.
- ► Low harmonic content and minimal losses.
- ► Increased efficiency and production.
- >> Prolonged working life of the turbine.

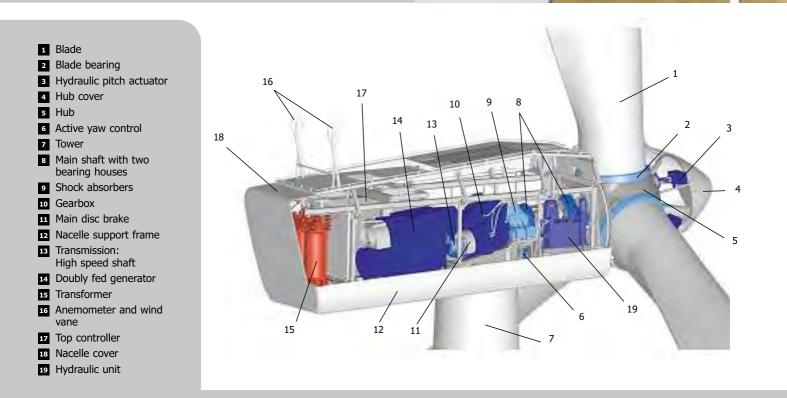
Gamesa SGIPE

Gamesa SGIPE and its new generation Gamesa WindNet[®] (wind farm control systems), developed by Gamesa, that allow realtime operation and remote control of wind turbines, meteorological mast and electrical substation via satellite-terrestrial network. Modular design with control tools for active and reactive energy, noise, shadows and wake effects. TCP/IP architecture with a Web interface.

SMP Predictive Maintenance System

Predictive Maintenance System for the early detection of potential deterioration or malfunctions in the wind turbine's main components.

Benefits:


- ▶ Reduction in major corrective measures.
- ▶ Increase in the machine's availability and working life.
- Preferential terms in negotiations with insurance companies
- ▶ Integration within the control system.

Noise control

Aerodynamic blade tip and mechanical component design minimize noise emissions. In addition, Gamesa has developed the Gamesa NRS® noise control system, which permits programming the noise emissions according to criteria such as date, time or wind direction. This achieves the goals of local regulation compliance as well as maximum production.

Grid connection

Gamesa's doubly-fed wind turbines and Active Crowbar and over sized converter technologies ensure the compliance with the most demanding grid connection requirements. Low voltage ride-through capability and dynamic regulation of active and reactive power.

Power Curve Gamesa G80-2.0 MW

(for an air density of 1.225 kg/m³)

Power curve calculation based on NACA 63.XXX and FFA-W3 airfoils.

Calculation parameters: 50 Hz grid frequency; tip angle pitch regulated; 10% turbulence intensity and a variable rotor speed ranging from 9.0 - 19.0 rpm.

4

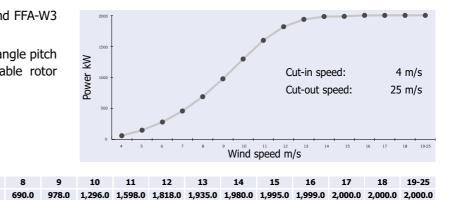
66.3

5

152.0

6

280.0


7

457.0

8

SPEED (m/s)

POWER (kW)

C/ Ciudad de la Innovación, 9-11 31621 Sarriguren (Spain) Tel: +34 948 771000 Fax: +34 948 165039 info@gamesacorp.com www.gamesacorp.com

GERMANY

Wailandtstrasse 7 G3741 Aschaffenburg Tel: +49 (0) 6021 15 09 0 Fax: +49 (0) 6021 15 09 199 E-mail: germany.wind@gamesacorp.com

DENMARK

Vejlsøvej 51 8600 Silkeborg Tel: +45 87 229205 / 9204 Fax: +45 87 229201

FRANCE

 FRANCE

 Parc Mail — Bâtiment G

 6 Allée Irène Joliot Curie

 69791 Saint Priest

 Tel: +33 (0) 472 79 47 09

 Fax: +33 (0) 478 90 05 41

GREECE

3, Pampouki Street 154 51 Neo Psichiko Athens Tel: +30 21 06753300 Fax: +30 21 06753305

ITALY

Via Pio Emanuelli,1 Corpo B, 2º piano 00143 Rome Tel: +39 0651531036 Fax: +39 0651530911

PORTUGAL Edificio D. Joâo II PARQUE DAS NAÇOES Av. D. Joâo II, lote 1.06.2.3–7° B 1990-090 Lisbon Tel: +351 21 898 92 00 Fax: +351 21 898 92 99

UNITED KINGDOM

Rowan House Hazell Drive NEWPORT South Wales NP10 8FY Tel: +44 1633 654 140 Fax: +44 1633 654 147

UNITED STATES

1 Ben Fairless Drive - Ste. 2 Fairless Hills, PA 19030 Tel: +1 215 736 8165 Fax: +1 215 736 3985

CHINA

Room 605, CBD International Building CbD International Buildin N.° 16, Yong An Dong Li, Chaoyang District Beijing 100022 P.R. China Tel.: +86 10 6567 9888 Fax: +86 10 6566 9666

JAPAN

Daiwa Jisho Building 4F - 411 74-1 Naka-ku, Yamashita-cho Yokohama-city 231-0023 Kanagawa Tel: +81 45 680 50 80 Fax: +81 45 680 50 81

The present document, its content, its annexes and/or amendments has been drawn up by Gamesa Corporación Tecnológica, S.A. for information purposes only and could be modified without prior notice. All the content of the Document is protected by intellectual and industrial property rights owned by Gamesa Corporación Tecnológica, S.A. The addressee shall not reproduce any of the information, neither totally nor partially. Printed date: August 2008

APPENDIX D Final MAC And FAA Determinations

FAA Determination of No Hazard to Air Navigation-Proposed Structure Height: 394' AGL

Federal Aviation Administration Air Traffic Airspace Branch, ASW-520 2601 Meacham Blvd. Fort Worth, TX 76137-0520

Issued Date: 01/11/2009

Ron Files Atlantic Design Engineering, LLC. 37 Pleasant Street Sagamore Beach, MA 02561

**** DETERMINATION OF NO HAZARD TO AIR NAVIGATION ****

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:	Wind Turbine Balboni Turbine #1 -revised		
Location:	Plymouth, MA		
Latitude:	41-55-46.00N NAD 83		
Longitude:	70-38-37.00W		
Heights:	361 feet above ground level (AGL)		
	446 feet above mean sea level (AMSL)		

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

As a condition to this Determination, the structure is marked and/or lighted in accordance with FAA Advisory circular 70/7460-1 K Change 2, Obstruction Marking and Lighting, white paint/synchronized red lights - Chapters 4,12&13(Turbines).

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be completed and returned to this office any time the project is abandoned or:

_____ At least 10 days prior to start of construction (7460-2, Part I)

__X__ Within 5 days after the construction reaches its greatest height (7460-2, Part II)

This determination expires on 01/11/2011 unless:

- (a) extended, revised or terminated by the issuing office.
- (b) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE POSTMARKED OR DELIVERED TO THIS OFFICE AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. Additional wind turbines or met towers proposed in the future may cause a cumulative effect on the national airspace system. This determination is based, in part, on the foregoing description which includes specific coordinates and heights . Any changes in coordinates will void this determination. Any future construction or alteration requires separate notice to the FAA.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

If we can be of further assistance, please contact our office at (770) 909-4329. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2008-WTE-3623-OE.

Signature Control No: 603154-107765044 Michael Blaich Specialist (DNE -WT)

Massachusetts Aeronautics Commission Airspace Review- Proposed Structure Height: 394' AGL

DEVAL L. PATRICK GOVERNOR

TIMOTHY P. MURRAY LIEUTENANT GOVERNOR

BERNARD COHEN SECRETARY AND CHAIR THE COMMONWEALTH OF MASSACHUSETTS Executive Office of Transportation Massachusetts Aeronautics Commission

SEP - 5 2008

September 2, 2008

Simon Thomas, PE Atlantic Design P.O. Box 1051 Sagamore Beach, MA 02563

RE: MAC File No 08-PYM-V0361-02, Turbine (Atlantic Design), Plymouth MAC File No 08-PYM-V0361-03, Turbine (Atlantic Design), Plymouth

Dear Mr. Thomas:

Enclosed is a copy of the final determination by the Massachusetts Aeronautics Commission (MAC) on your *Request for Airspace Review* of the above referenced proposal. The MAC's assistance is offered pursuant to the aviation law requirements of the Commonwealth.

Please note that although the proposal is not subject to further action required by MAC laws or regulations, this office may offer additional comments after considering FAA's determination of its impact to a public use airport or NAVAID facility through the aeronautical study process.

This project does not violate MAC laws or regulations.

If you have any questions, please feel free to contact me at 617-973-8891, or email me at joanne.ruddy@mac.state.ma.us

Sincerely,

M. Ruddy

Joanne M. Ruddy Airport Engineer

Enclosed: Airspace Review Form

	The Common AERONAL					ice Use Only ace Analysis	<u>w</u>
a Constant	REQUEST FO				(HEN)	nents Received	
	-PYM-V0361-02 FAA File					eference only))
ANALYSIS and render a	CMR (Code of Massachusetts Reg er 90, Section 35B, the Massachus determination for the project listed I	etts Aeronautic	, Hazzards to air r s Commission (M	navigation. Pa AC) agrees to	rsuant to Massa perform an AIR	SPACE	
	areas must be completed. e, address, telephone numbe	<u>r): Spo</u>	onsor Represen	tative (same	e data if applic	cable):	
Last Name Thomas	Suffix First Name PE Simon	Last	lame DMAS	Suffix	First Name Simon		
Company	Telephone (508) 888-9282	Comp	the second se	Tele	phone 08) 888-9282		
Address P.O. Box 1051	City State Zip Sagamore Bea M 02	Code Addre	ss D. Box 1051	City	1	State Zip Code	
	Email ron.files@yahoo.com	. <u></u>	. BOX 1051	Ema			
Project Description (pl	ease type or print clearly):	[Locati		n.files@yahoo Elevation Dat		
Turbine (Atlantic Desi			Nearest City,			<u>a.</u>	
This notice is for a pro	posed 361' (AGL) AAER wind	turbine		Degrees	Minutes	Seconds	
capable of producing 1	500 kW of electricity. It is loca th of Route 3 in Plymouth, MA	ted east of	Latitude	41°	55'	47"	
location is the northern	location of the two proposed t	turbine sites.	Longitude	70°	38'	34"	
			Datum Site elevati	NAD 83 on above M	NAD 2		
			1		e ground (ft):	74 msl 361 agl	
				-	ove MSL (ft):	435 msl	
REQUIRED: Attach 8 1/2 x	11 inch map (e.g. USGS Quad Sheet) si	howing location of	f project.		. ,		
Nearest Public-Use Av	ation Facility: Plymouth Mun	icipal Airport					
Print or type, below, the name	of person filing this request for review	Signature			Date		
					8/*	11/2008	
	DO NOT WRITE BELOW TH		R MAC OFFIC	E USE ONL	Y ***********	**	
	ALYSIS concludes the follow	•					
Closest Runway: 33		3.8 NM	Offset from R	W CL: 3.	3 NM LE	eft 🖌 Right	
Project violates MGL Project violates MGL	. Ch. 90, 35B by	ft. [Runway H	orizontal Plane -	3,000' x 2 Sta	atute Miles, 150'		
	CMR, 5.03(1)(a) by		orizontal Plane -				
Project violates 702	CMR, 5.03(2)(a) by		lorizontal Plane / lorizontal Plane /				
Project does not viol	ate MAC Airspace Laws or Re	gs.	ionzontal Flane /	water - 500)	(10,000 @ 20:1	siopej	
AC hereby issues the	e following DETERMINATION	4:					
	ursuant to MGL Ch. 90, 35B, f		ay Horizontal F		Runway Appro		
* Sponsor must sub MAC Chief Legal Cou	nit a separate written request Insel, Massachusetts Aeronau	for a MAC Air tics Commiss	space Permit. sion, 10 Park Pl	Request she aza, Room	ould be addres 3510, MA 021	ssed to 16-3966	
Permit is not required	pursuant to MGL Ch. 90, 35E	3 🔳 No viola	tions of Laws o	or Regs.	Ch. 90 violatio	on = 30' agl	
MAC had the followir	g additional concerns:	3 15 4	FR ROUTE	FOR	A 30	TURBI	NE
FAA Standards			15 IMPE				
Traffic Pattern			ER BE				
VFR Route		-	Y UGHTIN				
elevation data provided	sed on the foregoing description bt the Sponsor. Any changes i termination null and void and	n the data pro	ovided to the M	AC from the	t which is sho	ht and wn	
Pau	rent. Del	b		9	2/08	5	

	The Commonweak AERONAUTIC REQUEST FOR A	s co	MMISSIC	DN	Airspace Analysis
	-V0394-03 FAA File No.:				(For reference only)
Genral Law (MGL) Chapter 90,	Code of Massachusetts Regulations; Section 35B, the Massachusetts Aero ination for the project listed below. must be completed.) 111.7, onautics	Hazzards to air n Commission (M/	avigation. AC) agree	n. Parsuant to Massachusetts es to perform an AIRSPACE
Sponsor (include name, add		Spor	nsor Represen	tative (sa	ame data if applicable):
Last Name Suf Thomas	ix First Name Simon	Last Na	mas	Suffix	× First Name Simon
Company	Telephone (508) 888-9282	Compa	the second se		Telephone
Address P.O. Box 1051	City State Zip Code Sagamore Bea M 02563-	Addres	Box 1051		(508) 888-9282 City State Zip Code
	Email ron.files@yahoo.com	1.0	B0X 1031		Sagamore Bea M 02563-
Project Description (please		i L	Locatio	on, Heid	ron.files@yahoo.com ht, Elevation Data:
Turbine (Atlantic Design)			Nearest City,	_	
capable of producing 1500 k Camelot Drive and south of	394' (AGL) AAER wind turbine W of electricity. It is located eas Route 3 in Plymouth, MA. This tion of the two proposed turbine	st of site	Latitude Longitude Datum Site elevatio	Degree 41° 70° NAD	es Minutes Seconds 55' 32" 38' 40" 0 83 MAD 27 re MSL (ft.): 77 msl
]		-	pove ground (ft): 394 agl above MSL (ft): 471 msl
REQUIRED: Attach 8 1/2 x 11 inch	map (e.g. USGS Quad Sheet) showing los	cation of		oradon	
Nearest Public-Use Aviation	Facility: Plymouth Municipal A	irport			
Print or type, below, the name of perso	n filing this request for review Signature				Date
					8/11/2008
	NOT WRITE BELOW THIS LINE	E - FOI	R MAC OFFICI	E USE C	ONLY *******
MAC Chief Legal Counsel, Permit is not required purs MAC had the following add FAA Standards MAC Traffic Pattern WAC VFR Route Ot This determination is based o elevation data provided bt the	Distance from RW end 3.6 20, 35B byft. [Ru 20, 35B byft. [Ru 5.03(1)(a) byft. [Ru 5.03(2)(a) byft. [Ru AC Airspace Laws or Regs. wing DETERMINATION: Int to MGL Ch. 90, 35B, for: Massachusetts Aeronautics Co uant to MGL Ch. 90, 35BN Massachusetts Aeronautics Co UAT TO	Inway H Inway H Inway H Inway H Runw AC Air: mmiss o violat A IT UER In CN I I E I I E I I E I I E I I I E I I I I	orizontal Plane - orizontal Plane - orizontal Plane / I orizontal Plane / I ay Horizontal Plane / I ay	3,000' x 2 3,000' x 3 Land - 500 Water - 50 Plane [] Request aza, Roo r Regs. [E1. 1 E4TIVE UPPEI Courding to AC from	2 Statute Miles, 150' above RW] 3,000' @ 20:1 slope] 10' x 10,000' @ 20:1 slope] 100' x 10,00
Mgr of Airport Ergine	ering, Massachusetts Aeronauti	cs Con	nmission		Date

APPENDIX E Funding, Incentives, and Financial Assistance Information

Forward Capacity Market

Forward Capacity Market

Capacity Market Basics

As a result of a settlement agreement approved by the Federal Energy Regulatory Commission (FERC), ISO New England is developing, and will soon administer, a Forward Capacity Market (FCM) for New England.

The intention of a capacity market is to increase electricity reliability in the region. A capacity market allows utilities and generators to dynamically price and allocate capacity. The hope is that such a market will encourage suppliers to build more capacity by offering them stable revenue streams on which they can finance electricity generation investments.

Why A Capacity Market? Market Failure and its Impacts

Basic economic theory predicts that a competitive electricity market will provide price signals that reflect changes in supply and demand. In a competitive electricity market, prices would allow consumers to make decisions easily and allow generators to decide whether investing in additional capacity is economical.

However, the current electricity market is not competitive; two limitations prevent the sending of appropriate price signals to consumers and producers:

Absence of Demand-Side Response:

- Since consumers pay a flat rate for electricity, they do not see the rise in wholesale prices when demand increases. In other words, there is no market mechanism by which they might reduce demand in response
- Consequently, when demand exceeds available capacity, price can rise indefinitely, with no corresponding increase in capacity or decrease in demand.
- As a result, regulators are forced to intervene and set shortage prices at a politically-acceptable low level.

Market Power:

- The inability of consumers to respond to rising demand incentivizes suppliers to exercise market power during periods of peak demand or shortage.
- Predictably, they withhold supply in order to take higher profits on the reduced output.

Regulators intervene and high shortage prices are suppressed.

To address the electricity market's structural problems, regulators cap the spot energy market. As a result, wholesale spot market prices for energy fail to rise high enough during periods of peak demand to recover the fixed costs of existing generation or to motivate investments in new generation. The revenues that generators do not receive because peak prices are suppressed are often referred to as "missing revenues."

Forward Capacity Market (FCM) of New England

The FCM compensates for the structural limitations of the electricity market by reducing market power and increasing reliability. Capacity shortfalls occur when capacity cannot cover their fixed costs; capacity markets induce a particular level of investment by paying more than fixed-costs when there is a shortage of capacity, and less when there is surplus capacity. As such, capacity markets should make up for "missing revenues."

The first goal of the FCM is to purchase sufficient capacity for reliable system operation for a future year at competitive prices. The FCM is a three-year forward auction beginning in June 1, 2010, preceded by a Transition Period from December 2006 to May 31, 2010.

Sellers and Buyers

In the FCM, electricity retailers are obligated to ensure that there is enough capacity to meet the demand of their customers by purchasing capacity in the auction or supplying it themselves. Capacity is purchased three years in advance of the obligation to deliver, allowing a new supplier sufficient time to complete any new projects that clear in the auction and reducing the risk involved with developing new capacity.

- All capacity suppliers that clear in the FCM will receive payments in the delivery year based upon a single clearing price set in the auction.
- Suppliers are obligated provide capacity for a specified period (1-5 years), and most sources must be available during shortage hours.
- During shortage hours, suppliers will receive revenues large enough to offset their variable costs and a portion of their fixed costs.
- Suppliers receiving capacity payments will not receive wind-fall profits during high-priced shortage hours because they will be assessed a Peak Energy Rent (PER) deduction against those capacity payments.
- Capacity buyers are utilities, marketers, or aggregators who provide electric power to a large number of end-use customers (also referred to as Load Serving Entities (LSEs)). All LSEs are responsible for purchasing a share of the region's capacity obligation, based on customers' historical use.

In today's restructured electricity markets, the high shortage prices required to induce new investment in capacity generation are generally suppressed by various marketpower mitigation measures. The Forward Capacity Market will attempt to create efficient investment incentives by restoring the missing peak energy revenues. The structure of the three-year forward market will provide stability for financing, and longer time commitments for new capacity to reduce investor risk. The market-clearing price will reflect the true long-run costs of efficient capacity resources, sending robust price signals for investments in new generation and retirement of inefficient capacity.

For more information, visit:

ISO-New England: http://www.iso-ne.com/markets/othrmkts_data/fcm/index.html

Energy Legal Blog: http://energylegalblog.com/archive/2006/03/14/Forward_Capacity_Market_Proposed_in Lieu_of_LICAP_for_New_England.aspx

Modified Accelerated Cost Recovery System +Bonus Depreciation

Incentives

Incentives List

Federal Incentives for Renewable Energy

Printable Version

Modified Accelerated Cost-Recovery System (MACRS) + Bonus Depreciation

Last DSIRE Review: 02/27/2008

Incentive Type:	Corporate Depreciation
0	Solar Water Heat, Solar Space Heat, Solar Thermal Electric, Solar Thermal Process Heat, Photovoltaics, Landfill Gas, Wind, Biomass, Renewable Transportation Fuels, Geothermal Electric, Fuel Cells, CHP/Cogeneration, Solar Hybrid Lighting, Direct Use Geothermal, Anaerobic Digestion, Microturbines
Applicable Sectors:	Commercial, Industrial
Authority 1:	26 USC § 168
Effective Date:	1986
Authority 2:	Economic Stimulus Act of 2008
Date Enacted:	2/13/2008
Effective Date:	12/31/2007
Expiration Date:	12/31/2008

Summary:

Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class lives for various types of property, ranging from three to 50 years, over which the property may be depreciated. For solar, wind and geothermal property placed in service after 1986, the current MACRS property class is five years. For certain biomass property, the MACRS property class life is seven years. Eligible biomass property generally includes assets used in the conversion of biomass to heat or to a solid, liquid or gaseous fuel, and to equipment and structures used to receive, handle, collect and process biomass in a waterwall, combustion system, or refuse-derived fuel system to create hot water, gas, steam and electricity.

The federal Energy Policy Act of 2005 (EPAct 2005) classified fuel cells, microturbines and solar hybrid lighting technologies as five-year property as well. The federal Economic Stimulus Act of 2008, enacted in February 2008, included a 50% bonus depreciation provision for eligible renewable-energy systems acquired and placed in service in 2008. To qualify for bonus depreciation, a project must satisfy these criteria:

- the property must have a recovery period of 20 years or less under normal federal tax depreciation rules;
- the original use of the property must commence with the taxpayer claiming the deduction;
- the property generally must be acquired during 2008; and
- the property must be placed in service during 2008 (or, in certain limited cases, in 2009).

If property meets these requirements, the owner is entitled to deduct 50% of the adjusted basis of the property in 2008. The remaining 50% of the adjusted basis of the property is depreciated over the ordinary depreciation schedule. The bonus depreciation rules do not override the depreciation limit applicable to projects qualifying for the federal business energy tax credit. Before calculating depreciation for such a project, including any bonus depreciation, the adjusted basis of the project must be reduced by one-half of the amount of the energy credit for which the project qualifies.

For more information on the federal MACRS, see *IRS Publication 946, IRS Form 4562: Depreciation and Amortization*, and *Instructions for Form 4562*. The <u>IRS web site</u> provides a search mechanism for forms and publications. Enter the relevant form, publication name or number, and click "GO" to receive the requested form or publication.

Public Information - IRS Internal Revenue Service 1111 Constitution Avenue, N.W. Washington, DC 20224 Phone: (800) 829-1040 Web site: http://www.irs.gov

Return to List of Incentives FAQs | Summary Maps | Summary Tables | Search By | Glossary | Links

© 2007 NC State University NC Solar Center

Net Metering Policies

Net Metering Policies

Net metering programs serve as an important incentive for consumer investment in renewable energy generation. Net metering enables customers to use their own generation to offset their consumption over a billing period by allowing their electric meters to turn backwards when they generate electricity in excess of their demand. This offset means that customers receive retail prices for the excess electricity they generate. Without net metering, a second meter is usually installed to measure the electricity that flows back to the provider, with the provider purchasing the power at a rate much lower than the retail rate.

Net metering is a low-cost, easily administered method of encouraging customer investment in renewable energy technologies. It increases the value of the electricity produced by renewable generation and allows customers to "bank" their energy and use it a different time than it is produced giving customers more flexibility and allowing them to maximize the value of their production. Providers may also benefit from net metering because when customers are producing electricity during peak periods, the system load factor is improved.

Currently, net metering is offered in more than 35 states (see the summary table and map below). For a more detailed description of state net metering policies and links to the authorizing legislation, see the DSIRE database, which is a project of the Interstate Renewable Energy Council funded by the U.S. DOE and managed by the North Carolina Solar Center.

Massachusetts

Massachusetts - Net Metering

Last DSIRE Review: 07/16/2008

Incentive Type: Net Metering Eligible Solar Thermal Electric, Photovoltaics, Wind, Biomass, Renewable/Other Hydroelectric, Geothermal Electric, Fuel Cells, Municipal Solid Technologies: Waste, CHP/Cogeneration, Anaerobic Digestion, Other Distributed Generation Technologies Applicable Commercial, Industrial, Residential, Nonprofit, Schools, Sectors: Local Government, State Government, Fed. Government, Agricultural, Institutional Limit on System "Class I" facilities: 60 kW Size: "Class II" facilities: 1 MW "Class III" facilities: 2 MW Limit on Overall Enrollment: 1% of each utility's peak load Treatment of Net Excess: Varies by system type and customer class Utilities Involved: Investor-owned utilities Interconnection Standards for Net Metering? Yes Website: http://www.mtpc.org/ cleanenergy/howto/interconnection/netppa.htm Authority 1: M.G.L. ch. 164, § 1G (amended by S.B. 2768) Authority 2: S.B. 2768 Date Enacted: 7/2/2008 Effective Date: 7/2/2008 Authority 3: 220 CMR 11.04 Effective Date: 1997

Summary:

Note: This record describes net metering in Massachusetts based on the statutory changes made by S.B. 2768, which was enacted July 2, 2008. However, the Massachusetts Department of Public Utilities (DPU) must first adopt new net-metering rules before these changes take effect (in practice). Under the current DPU rules, net metering is generally permitted for farm- renewable-energy systems and combined heat and power (CHP) systems up to 60 kilowatts (kW) in capacity. Please refer to the current rules for additional details. Contact the DPU for more information.

Net metering was originally authorized for renewable-energy systems and combined-heat-and-power (CHP) facilities with a generating capacity up to 30 kilowatts (kW) by the Massachusetts Department of Public Utilities in 1982. In 1997, the maximum individual system capacity was raised to 60 kW and customers were permitted to carry any net excess generation (NEG) -- credited at the "average monthly market price of generation" -- to the next bill.

In July 2008, net metering was significantly expanded by S.B. 2768, which established three separate categories of net-metering facilities. "Class I" facilities are generally defined as systems up to 60 kW in capacity. "Class II" facilities are generally defined as systems greater than 60 kW and up to one megawatt (MW) in capacity that generate electricity from agricultural products, solar energy or wind energy. "Class III" facilities are generally defined as systems greater than 60 kW and up to one megawatt (MW) in capacity that generate electricity from agricultural products, solar energy or wind energy. "Class III" facilities are generally defined as systems greater than 1 MW and up to 2 MW in capacity that generate electricity from agricultural products, solar energy or wind energy.

The state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric cooperatives in Massachusetts.) The aggregate capacity of net metering is limited to 1% of each utility's peak load.*

The treatment of customer NEG varies by facility class and customer type. In general, for NEG at the end of a billing period, Class I solar and wind facilities, Class II facilities, and Class III facilities used by government customers receive credit that is slightly less than the utility's full retail rate. Class III facilities that are used by customers other than government entities do not receive credit for the distribution component of each kilowatt-hour of NEG. Credits may be carried forward to the next month indefinitely, and credits from Class I and Class II wind and solar facilities may be transferred to another customer of the same utility. Credits from Class III facilities may be transferred to other customers with the utility's permission.

Massachusetts also allows "neighborhood net metering" for neighborhoodbased Class I, II or III facilities that are owned by (or serve the energy needs of) a group of 10 or more residential customers in a single neighborhood and served by a single utility. If a neighborhood facility has NEG at the end of a billing period, the credits are awarded to designated neighborhood customers that have an ownership interest in the facility. The amount of NEG attributed to each such customer is determined by the allocation provided by the neighborhood net metering facility. Credits may be carried forward to the next month indefinitely.

* For the purpose of calculating the aggregate capacity, the capacity of a netmetered solar facility is 80% of the facility's DC rating at standard test conditions (STC).

Contact:

Barry Perlmutter

Massachusetts Department of Public Utilities 100 Cambridge Street, Room 1210 Boston, MA 02202 Phone: (617) 305-3659 Fax: (617) 723-8812 E-Mail: <u>barry.perlmutter@state.ma.us</u> Web site: <u>http://www.state.ma.us/dpu</u>

Production Tax Credit (PTC)

NC Solar Center

Federal Incentives for Renewable Energy

Printable Version

Incentives List

Incentives

Renewable Electricity Production Tax Credit (PTC)

Last DSIRE Review: 10/09/2008

Incentive Type: Corporate Tax Credit

	Landfill Gas, Wind, Biomass, Hydroelectric, Geothermal Electric, Municipal Solid Waste, Hydrokinetic Power (i.e., Flowing Water), Refined Coal, Indian Coal, Small Hydroelectric, Tidal Energy, Wave Energy, Ocean Thermal
Applicable Sectors:	Commercial, Industrial
Amount:	2.0¢/kWh for wind, geothermal, closed-loop biomass; 1.0¢/kWh for other eligible technologies. Generally applies to first 10 years of operation.
Eligible System Size:	Marine and Hydrokinetic: Minimum system size of 150 kW
Website:	http://www.irs.gov/pub/irs-pdf/f8835.pdf
Authority 1:	<u>26 USC § 45</u>
Date Enacted:	1992
Expiration Date:	12/31/2008 for some portions
Authority 2:	H.R. 1424: Div. B, Sec. 101 & 102 (The Energy Improvement and Extension Act of 2008)
Date Enacted:	10/03/2008
Effective Date:	Varies
Expiration Date:	Varies (see table below)

Summary:

The federal Renewable Electricity Production Tax Credit (PTC) is a per-kilowatt-hour tax credit for electricity generated by qualified energy resources and sold by the taxpayer to an unrelated person during the taxable year. The PTC was originally enacted in 1992 but has been renewed and expanded numerous times, most recently by H.R. 1424 in October 2008. This legislation extended the in-service deadlines for all qualifying technologies except Indian coal; expanded the list of qualifying resources to include marine and hydrokinetic resources, such as wave, tidal, current, and ocean thermal; and made changes to the definitions of several qualifying resources and facilities.

The effective dates of these changes vary. Marine and hydrokinetic energy production is eligible as of the date the legislation was enacted (October 3, 2008), as is the incremental energy production associated with expansions of biomass facilities. A change in the definition of "trash facility" no longer requires that such facilities burn trash, and is also effective immediately. Two provisions, one which redefines the term "non-hydroelectric dam", and another which modifies the qualifying criteria for refined coal, will take effect December 31, 2008.

The tax credit amount is 1.5¢/kWh (in 1993 dollars and indexed for inflation) for some technologies, and half of that amount for most others. The rate for refined coal is \$4.375/ton and the rate for Indian coal is \$1.50/ton through 2009 and \$2.00/ton thereafter. Both levels are adjusted for inflation annually. The rules governing the PTC are currently different for different types of resources and facilities. The table below outlines two of the most important characteristics of the tax credit -- in service deadline and credit amount -- as they apply to different facilities. The table includes changes made by H.R. 1424 (see History section for information on prior rules) and the inflation adjusted credit amounts are current for the 2007 tax year.

Resource Type	In Service Deadline	Credit Amount
Wind	December 31, 2009	2.0¢/kWh
Closed-loop Biomass	December 31, 2010	2.0¢/kWh
Open-loop Biomass	December 31, 2010	1.0¢/kWh
Geothermal Energy	December 31, 2010	2.0¢/kWh
Landfill Gas	December 31, 2010	1.0¢/kWh
Municipal Solid Waste	December 31, 2010	1.0¢/kWh
Qualified Hydroelectric	December 31, 2010	1.0¢/kWh

Marine and Hydrokinetic (150 kW or larger)*	December 31, 2011	1.0¢/kWh
Refined Coal	December 31, 2009	\$5.877/ton
Indian Coal	December 31, 2008	\$1.544/ton

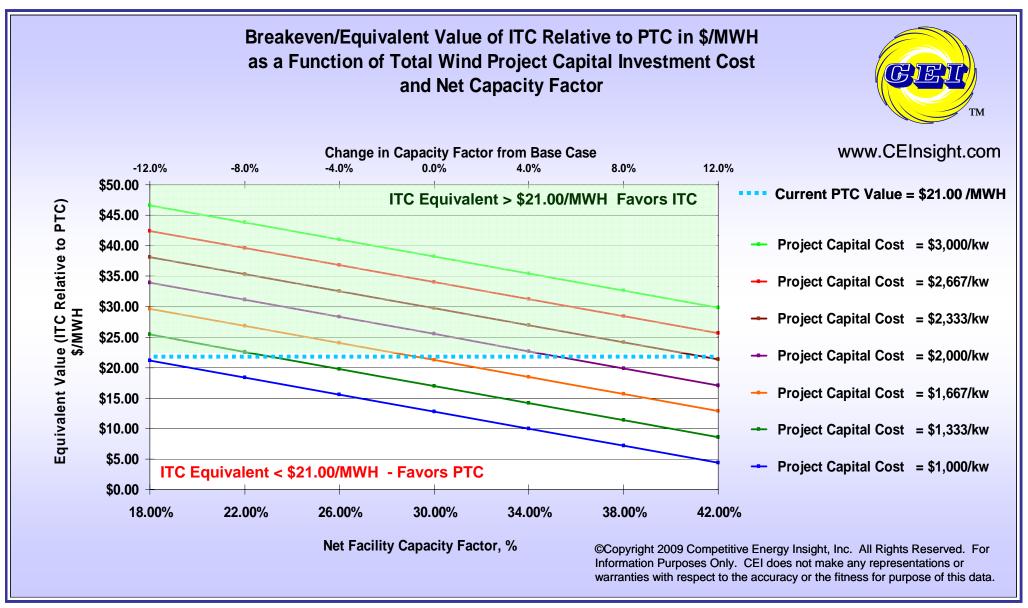
The duration of the credit is generally 10 years after the date the facility is placed in service, but there are several exceptions:

- Open-loop biomass, geothermal, small irrigation hydro, landfill gas, and municipal solid waste combustion facilities placed into service after October 22, 2004, and before enactment of EPAct 2005, on August 8, 2005, are only eligible for the credit for a five-year period.
- Open-loop biomass facilities that use cellulosic waste may receive the credit for five years after they are placed in service, with the beginning date set no earlier than January 1, 2005.
- Indian coal production facilities may receive the tax credit during for seven years after they are placed in service, with the beginning date set no earlier than January 1, 2006.

It is important to note that owners of geothermal projects who claim the federal business energy tax credit *may not* also claim the federal PTC. In addition, the tax credit is reduced for projects that receive other federal tax credits, grants, tax-exempt financing, or subsidized energy financing. A business can take the credit by completing Form 8835, "Renewable Electricity Production Credit," and Form 3800, "General Business Credit." For more information, contact IRS Telephone Assistance for Businesses at 1-800-829-4933.

History

As originally enacted by the Energy Policy Act of 1992, the PTC expired at the end of 2001, and was subsequently extended in March 2002 as part of the Job Creation and Worker Assistance Act of 2002 (H.R. 3090). The tax credit then expired at the end of 2003 and was not renewed until October 2004, as part of H.R. 1308, the Working Families Tax Relief Act of 2004, which extended the credit through December 31, 2005. The Energy Policy Act of 2005 (H.R. 6) modified the credit and extended it through December 31, 2007. In December 2006, the credit was extended for yet another year -- through December 31, 2008 -- by Section 201 of the Tax Relief and Health Care Act of 2006 (H.R. 6111).


Section 710 of the "American Jobs Creation Act of 2004" (H.R. 4520), expanded the PTC to include additional eligible resources -- geothermal energy, open-loop biomass, solar energy, small irrigation power, landfill gas, municipal solid waste combustion, and refined coal -- in addition to the formerly eligible wind energy, closed-loop biomass, and poultry-waste energy resources. The Energy Policy Act of 2005 (EPAct 2005) further expanded the credit to certain hydropower facilities and Indian coal (generally defined as coal reserves owned by an Indian tribe or that were held in trust by the U.S. government for the benefit of an Indian tribe). As a result of EPAct 2005, solar facilities placed into service after December 31, 2005, are no longer eligible for this incentive.

*H.R. 1424 added marine and hydrokinetic energy as eligible resource and removed "small irrigation power" as an eligible resource effective October 3, 2008. However, the definition of marine and hydrokinetic energy encompasses the resources that would have formerly been defined as small irrigation power facilities. Thus H.R. 1424 effectively extended the in-service deadline for small irrigation power facilities by 3 years, from the end of 2008 until the end of 2011.

FAQs | Summary Maps | Summary Tables | Search By | Glossary | Links

© 2007 NC State University NC Solar Center

This single chart illustrates the relative value of the Investment Tax Credit (ITC) based on the "Breakeven" or "Equivalent" Net Present Value (NPV_{10%}) of the cash flows of a wind project utilizing the ITC versus the same project utilizing the Production Tax Credits (PTCs). The chart is presented as a function of the Project Capital Cost (\$/kw) and Net Capacity Factor (%). The dashed blue line (•••••) shows the current value of the PTCs (\$21/MWH + esc.). Cases above this line (shaded in light green) favor the ITC because the "Equivalent" NPV_{10%} of the ITC and its associated depreciation benefits would be worth more than the \$21/MWH PTC and its associated depreciation benefits. Cases below the dashed blue line (shaded in pink) favor the PTC because the NPV of its after-tax value and depreciation benefits are greater. Key assumptions include: i) reduction to the depreciable basis of the asset with the ITC, ii) escalation of the PTC, iii) 50% Bonus Depreciation and iv) a discount rate of 10% after-tax on a leveraged basis. This chart, along with complete "Bank Quality" analysis, reports and charts of "Project-Level" and "Partner Level" returns can be produced using the *EconExpert-Wind*TM Financial Model and the *EconExpert-Partnership Module*. Other premises entered into the *EconExpert* model in this analysis are shown on the next page.

Some important premises that are the basis for the chart on the previous page include:

analyzed from 18% to 42%
analyzed from \$1000/kw to \$3000/kw net power production
10%
5%
50% / 14 yrs / 7%
35%
30%
90%
\$21.00
2%/yr (Rounds Annual to Nearest Whole \$)
Start of Operations 12/2010
Yes
10 Years
90% (A)
15% of (A) above
100%
100%

Other project premises used in the model that were not influential in the "Project Level" ITC vs PTC comparison included operating costs, land lease rates, royalties, escalation rates, PPA rates, etc.

It is important to note that the comparative value of the ITC and PTC on a Net Present Value basis is not the only consideration to take into account when considering these alternative strategies. Other important considerations, all of which can be fully assessed in *EconExpert* include: i) the up-front receipt / lack of production risk associated with the ITC, ii) investor's appetite for tax benefits and risk, and iii) alternative business strategies for monetizing the ITCs, PTCs and accelerated depreciation benefits including Federal Grant Programs, Tax Limited Partnerships, Leases and Alternative Financing Approaches. What is most important is that now investors will have a menu of options to choose from when developing projects, improving the prospects for success and profitability, and that all of these options can be fully evaluated in *EconExpert* from the perspective of <u>any</u> stakeholder in the transaction.

For further information and for a demonstration of the *EconExpert* suite of advanced software tools for the analysis of investments in Renewable or Fossil Energy Projects, please visit our website at <u>www.CEInsight.com</u>, or contact us directly at:

Competitive Energy Insight, Inc.	12025 Blue Diamond Court	San Diego, CA	92131
Tel) 858 – 566 -	- 0221 Fax) 858 - 560	6 – 0287	
email) <u>SProvol@CEIns</u>	ight.com Website) www	w.CEInsight.com	

Renewable Energy Certificates (RECs)

Renewable Energy Certificates

Renewable energy certificates (RECs), also known as green certificates, green tags, or tradable renewable certificates, represent the environmental attributes of the power produced from renewable energy projects and are sold separate from commodity electricity. Customers can buy green certificates whether or not they have access to green power through their local utility or a competitive electricity marketer. And they can purchase green certificates without having to switch electricity suppliers.

- <u>Table of Retail Products</u>
- Table of Commercial &/or Wholesale Marketers
- List of REC Marketers

Renewable Energy Certificates

Retail Products

The table shown here summarizes renewable energy certificate (REC) products available to retail customers nationally or regionally. Please contact our <u>Webmaster</u> if you have questions or more recent information regarding these products.

Company and product listings do not represent endorsement by either the National Renewable Energy Laboratory or the U.S. Department of Energy.

	National Retail REC Products (last updated October 2007)				
Certificate Marketer	Product Name	Renewable Resources	Location of Renewable Resources	Residential Price Premiums*	Certification
<u>3Degrees</u>	Renewable Energy Certificates	100% new wind	Nationwide	2.0¢/kWh	Green-e
<u>3 Phases</u> Renewables	<u>Green</u> <u>Certificates</u>	100% biomass, geothermal, hydro, solar, wind	Nationwide	1.2¢/kWh	Green-e
BlueStar Energy (ComEd territory only)	<u>Go Green &</u> <u>Save Green</u>	new wind	Nationwide	0.0¢/kWh	Green-e
Bonneville Environmental Foundation	<u>Denali Green</u> Tags (Alaska only)	100% new wind	10% Alaska, 90% Nationwide	2.0¢/kWh	Green-e
Bonneville Environmental Foundation	<u>Solar Green</u> <u>Tags</u>	100% new solar	Nationwide	5.6¢/kWh	Green-e

				1	1
Bonneville Environmental Foundation	<u>Wind & Solar</u> Green Tags <u>Blend</u>	50% new wind, 50% new solar	Nationwide	2.4¢/kWh	Green-e
Bonneville Environmental Foundation	<u>Wind Green</u> Tags	100% wind	Nationwide	2.0¢/kWh	Green-e
Bonneville Environmental Foundation	Zephyr Energy (Kansas Only)	50% new low-impact hydropower	Mid-West, West	2.0¢/kWh	Green-e
Carbonfund.org	<u>MyGreenFuture</u>	99% new wind, 1% new solar	Nationwide	0.5¢/kWh	Green-e
<u>Carbon</u> <u>Solutions</u> <u>Group</u>	<u>CSG</u> <u>CleanBuild</u>	biomass, biogas, wind, solar, hydro	Nationwide	0.9¢/kWh	Green-e
<u>Choose</u> <u>Renewables</u>	<u>CleanWatts</u>	100% new wind	Nationwide	1.7¢/kWh	Green-e
<u>Clean and</u> <u>Green</u>	<u>Clean and</u> <u>Green</u> <u>Membership</u>	100% new wind	Nationwide	1.6¢/kWh- 3.0¢/kWh	-
<u>Community</u> <u>Energy</u>	<u>NewWind</u> <u>Energy</u>	100% new wind	Nationwide	2.5¢/kWh	Green-e
Conservation Services Group	<u>ClimateSAVE</u>	95% new wind, 5% new solar	Kansas (wind), New York (solar)	1.6¢/kWh- 1.75¢/kWh	Green-e
<u>NativeEnergy</u>	<u>CooWatts</u>	100% new wind	Nationwide	0.8¢/kWh	Green-e
<u>NativeEnergy</u>	<u>Remooable</u> <u>Energy</u>	100% new biogas	Pennsylvania	0.8¢/kWh- 1.0¢/kWh	CCX***
<u>Enpalo</u>	<u>US CleanGen</u>	100% new wind	Nationwide	1.0¢/kWh	Green-e
Good Energy	<u>Good Green</u> <u>RECs</u>	various	Nationwide	0.4¢/kWh- 1.5¢/kWh	Green-e
<u>Green</u> <u>Mountain</u> <u>Energy</u>	BeGreen RECs	wind, solar, biomass	Nationwide	1.4¢/kWh	—
Juice Energy	<u>Positive Juice -</u> <u>Wind</u>	100% wind	Nationwide	1.1¢/kWh	Green-e
<u>Maine</u> <u>Renewable</u> <u>Energy/Maine</u> <u>Interfaith</u> <u>Power & Light</u>	<u>Maine</u> <u>WindWatts</u>	100% new wind	Maine	2.0¢/kWh	Green-e
<u>Mass Energy</u> <u>Consumers</u> <u>Alliance</u>	<u>New England</u> Wind Fund	100% new wind	New England	~5.0¢/kWh (donation)	-
<u>MMA</u> <u>Renewable</u> <u>Ventures</u>	PVUSA Solar Green Certificates	100% solar	California	3.3¢/kWh	Green-e
				1	

Marketing	Wind REC			2.0¢/kWh	
Renewable Choice Energy	American Wind	100% new wind	Nationwide	2.0¢/kWh	Green-e
Santee Cooper	<u>SC Green</u> <u>Power</u>	landfill gas, solar	South Carolina	3.0¢/kWh	Green-e
<u>Sky Blue</u> <u>Electric</u>	Sky Blue 40	100% wind	Nationwide	4.2¢/kWh	Green-e
<u>SKY energy,</u> Inc.	<u>Wind-e</u> <u>Renewable</u> <u>Energy</u>	100% new wind	Nationwide	2.4¢/kWh	Green-e
Sterling Planet	Sterling Wind	100% new wind	Nationwide	1.85¢/kWh	Green-e
Village Green Energy	Village Green Power	solar, wind, biogas	California, Nationwide	2.0¢/kWh- 2.5¢/kWh	Green-e
Waverly Light & Power	lowa Energy Tags	100% wind	Iowa	2.0¢/kWh	-
WindCurrent	Chesapeake Windcurrent	100% new wind	Mid-Atlantic States	2.5¢/kWh	Green-e
<u>WindStreet</u> Energy	Renewable Energy Credit Program	wind	Nationwide	~1.2¢/kWh	-

Footnote:

* Product prices are updated as of July 2006. Premium may also apply to small commercial customers. Large users may be able to negotiate price premiums. ** Product is sourced from Green-e and ERT-certified RECs. ERT also certifies the entire

Product is sourced from Green-e and ERT-certified RECs. ERT also certifies the entire product portfolio.

*** The Climate Neutral Network certifies the methodology used to calculate the CO2 emissions offset.

NA = Not applicable.

Source:

National Renewable Energy Laboratory.

Renewable Energy Certificates

Commercial &/or Wholesale Marketers

The table shown here lists commercial &/or wholesale marketers of renewable energy certificates (RECs).

Company and product listings do not represent endorsement by either the National Renewable Energy Laboratory or the U.S. Department of Energy.

National Commercial &/or Wholesale REC Marketers				
<u>3Degrees</u>	<u>3 Phases</u> <u>Renewables</u>	Amerex Brokers	<u>Aquila</u>	
Basin Electric	BlueStar Energy	<u>Bonneville</u>	<u>Bonneville</u>	

Power Cooperative	<u>Services</u>	Environmental Foundation	Power Administration (BPA)
<u>BP Energy</u> <u>Company</u>	<u>Brookfield</u> <u>Renewable</u> <u>Power</u>	Calpine Corporation	Carbonfund.org
Carbon Solutions Group	<u>Centennial</u> <u>Energy</u> <u>Resources</u>	Clean Currents	Clear Energy Brokerage & Consulting
<u>Clear Sky</u> <u>Power</u>	<u>ComEd</u>	<u>Community</u> Energy Inc.	Conservation Services Group
Constellation NewEnergy	<u>Element</u> <u>Markets</u>	Empire District Electric Company	Endless Energy Corporation
<u>Enpalo</u>	<u>Exelon Power</u> <u>Team</u>	FirstEnergy Solutions Corporation	FPL Energy
<u>Good Energy,</u> LP	<u>Green Mountain</u> <u>Energy</u> <u>Company</u>	Hess Energy	Juice Energy
Liberty Power	<u>Maine Interfaith</u> Power & Light	<u>Mainstay</u> <u>Energy</u>	Massachusetts Energy Consumers Alliance (Mass Energy)
MidAmerican Energy	<u>MotivEarth</u>	<u>NativeEnergy</u>	Neuwing Energy Ventures
<u>Nexant Clean</u> <u>Energy</u> <u>Solutions</u>	<u>Old Mill Power</u> <u>Company</u>	Pacific Renewables	Peoples Energy Services
PowerLight	PPL Corporation	PPM Energy	Premier Energy Marketing
Premier Power Solutions	<u>QVINTA, Inc.</u>	Reliant Energy	Renewable Choice Energy
Select Energy	Sempra Energy Solutions	Shell Trading	<u>SKY energy,</u> Inc.
Sol Systems	<u>Spartan</u> <u>Renewable</u> <u>Energy</u>	<u>Sterling Planet,</u> Inc.	<u>Strategic</u> <u>Energy</u>
SUEZ Energy Resources NA	<u>SunEdison</u>	<u>Sun Farm</u> <u>Ventures, Inc.</u>	TFS Energy
<u>Tradition</u> Energy	Tullett Prebon	TXU Energy	<u>Unicoi Energy</u> <u>Services</u>
Viking Wind Partners, LLC	<u>Village Green</u> Energy	Vision Quest	<u>Waste</u> <u>Management</u>
Waverly Light	Western Area	<u>WindCurrent</u>	<u>WindQuest</u>

and Power	Power Administration	Energy, Inc.
<u>WindStreet</u> Energy		

Renewable Energy Certificates

REC Marketers

Below you will find information and news about wholesale and retail renewable energy certificate marketers and brokers.

Company and product listings do not represent endorsement by either the National Renewable Energy Laboratory or the U.S. Department of Energy.

Active Retail Marketers 3Dearees 3 Phases Renewables Bonneville Environmental Foundation Carbon Solutions Group **Choose Renewables** Community Energy Inc. **Conservation Services Group** Enpalo Good Energy, LP Green Mountain Energy Company Juice Energy Maine Interfaith Power & Light Massachusetts Energy Consumers Alliance (Mass Energy) *Native*Energy Pacific Gas and Electric Company Premier Energy Marketing Renewable Choice Energy SKY energy, Inc. Sterling Planet, Inc. Village Green Energy Waverly Light and Power WindCurrent WindStreet Energy

Certificate Brokers

<u>3 Phases Renewables</u> <u>Amerex Brokers</u> <u>Cantor Fitzgerald</u> <u>Environmental Brokerage</u>

Active Commercial &/or Wholesale Marketers 3Degrees

3 Phases Renewables Amerex Brokers Aquila Basin Electric Power Cooperative BlueStar Energy Services Bonneville Environmental **Foundation Bonneville Power** Administration (BPA) BP Energy Company **Brookfield Renewable Power** Calpine Corporation Carbonfund.org Carbon Solutions Group Centennial Energy Resources **Clean Currents** Clear Energy Brokerage & Consulting Clear Sky Power ComEd Community Energy Inc. **Conservation Services Group** Constellation NewEnergy **Element Markets Empire District Electric** Company Endless Energy Corporation Enpalo Exelon Power Team **FirstEnergy Solutions** Corporation

Chicago Climate Exchange Clear Energy Brokerage & Consulting Element Markets Emission Credit Brokers Evolution Markets GFI Group Good Energy, LP GT Energy Natsource TFS Energy Tullett Prebon

Consumer Protection/REC Tracking Systems

APX, Inc. Clean Power Markets, Inc. Environmental Resources Trust Federal Trade Commission Gold Standard Foundation Green-e TRC Certification Michigan Independent Power Producers Association Western Renewable Energy Generation Information System

Inactive

Big Green Energy Burlington Electric Department Clean and Green Connecticut Energy Cooperative EAD Environmental (Natsource) Los Angeles Department of Water and Power National Energy and Gas Transmission Navitas Energy FPL Energy Good Energy, LP Green Mountain Energy Company Hess Energy Juice Energy Liberty Power Maine Interfaith Power & Light Mainstay Energy Massachusetts Energy Consumers Alliance (Mass Energy) MidAmerican Energy <u>MotivEarth</u> *Native*Energy Neuwing Energy Ventures Nexant Clean Energy Solutions Old Mill Power Company Pacific Renewables Peoples Energy Services PowerLight PPL Corporation PPM Energy Premier Energy Marketing Premier Power Solutions QVINTA, Inc. Reliant Energy Renewable Choice Energy Select Energy Sempra Energy Solutions Shell Trading SKY energy, Inc. Sol Systems Spartan Renewable Energy Sterling Planet, Inc. Strategic Energy SUEZ Energy Resources NA SunEdison Sun Farm Ventures, Inc. TFS Energy Tradition Energy **Tullett Prebon** TXU Energy Unicoi Energy Services Viking Wind Partners, LLC Village Green Energy Vision Quest Waste Management Waverly Light and Power Western Area Power Administration WindCurrent WindQuest Energy, Inc. WindStreet Energy

How Renewable Energy Credits Work

The United States power grid is like a big bathtub filled with electrons. Power generators of all types dump their electricity into this bathtub.

Since seventy percent of these electrons come from burning fossil fuels, this "water" is pretty dirty.

We all draw electricity from this bathtub, so we can't help but consume a lot of "dirty water".

Renewable energy producers generate Renewable Energy Credits every time they generate electricity.

Renewable Choice Energy sells these credits on behalf of the renewable energy producers.

Purchasing Renewable Energy Credits allows consumers to guarantee the electricity they consume is replaced by clean power.

There are two ways to buy renewable energy in the United States:

A

В

Install renewable energy onsite (e.g. solar panels)

Fund renewable generation on the electric power system (e.g. Renewable Energy Credits)

Many large companies, government institutions, non-profit organizations, educational institutions and individuals pursue Option B because they can:

- Purchase renewable energy for multiple facilities in one transaction
- Encourage renewable energy development wherever it is most practical
- Support multiple renewable energy projects/technologies
- Support efficient, large-scale projects
- Receive a fixed price for multi-year commitments
- Rely on independent tracking, auditing, and verification

Guarantee measurable emission reductions

A few of the leading environmental non-profit organizations that support Renewable Energy Credit purchasing:

A few of the organizations purchasing Renewable Energy Credits today:

Did you know...

Renewable Energy Credits are the accepted way to track renewable energy generation in the United States.

All regional power systems (including WREGIS, ERCOT, NEPOOL) rely on Renewable Energy Credits.

State-mandated renewable energy programs rely on Renewable Energy Credits.

Twenty-four states plus the District of Columbia now use RECs to promote renewable energy development.

Federal legislation will likely include Renewable Energy Credits.

In August 2007, the U.S. House of Representatives passed legislation (Roll Call No. 827) requiring that 15 percent of electricity come from renewable energy by the year

A Carbon Reduction Tool

Purchasing RECs is the widely accepted way to

Leading organizations, including the Environmental Protection Agency and the World Resources Institute, advise companies and people looking to offset pollution caused by their electricity consumption to buy Renewable Energy Credits.

WORLD RESOURCES INSTITUTE

Verified, Certified, Audited

Green-e, widely respected non-profit produdited gram, verifies and certifies corporate and residential Renewable Energy Credit purchases. A large number of stakeholders worked to create Green-e which

champions the highest environmental certification standard available. Green-e also audits

voluntary transactions, guaranteeing every credit comes from an environmentally sound project that does not benefit from government regulations.

Renewable Energy Property Tax Exemption

DSIRE	
Database of State Incentives for Renewables & Efficiency	

 Bengy Efficiency and Renewable Energy North Carolina Solar Center
 OIREC

6/3/09

Incentives/Policies for Renewables & Efficiency

Renewable Electricity Production Tax Credit (PTC)

Federal

Last DSIRE Review: 02/19/2009

Eligible Renewable/Other	Corporate Tax Credit Landfill Gas, Wind, Biomass, Hydroelectric, Geothermal Electric, Municipal Solid Waste, Hydrokinetic Power (i.e., Flowing Water), Anaerobic Digestion, Small Hydroelectric, Tidal Energy, Wave Energy, Ocean Thermal
Applicable Sectors:	Commercial, Industrial
Amount:	2.1¢/kWh for wind, geothermal, closed-loop biomass; 1.0¢/kWh for other eligible technologies. Generally applies to first 10 years of operation.
Eligible System Size:	Marine and Hydrokinetic: Minimum capacity of 150 kW Agricultural Livestock Waste: Minimum capacity of 150 kW
Web Site:	http://www.irs.gov/pub/irs-pdf/f8835.pdf
Authority 1:	<u>26 USC § 45</u>
Date Enacted:	1992

Summary:

Note: The American Recovery and Reinvestment Act of 2009 (H.R. 1) allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal <u>business energy investment tax credit</u> (ITC) or to receive a <u>grant</u> from the U.S. Treasury Department <u>instead of</u> taking the PTC for new installations. The new law also allows taxpayers eligible for the business ITC to receive a <u>grant</u> from the U.S. Treasury Department <u>instead of</u> taking the U.S. Treasury Department <u>instead of</u> taking the U.S. Treasury Department <u>instead of</u> taking the business ITC for new installations.

The federal renewable electricity production tax credit (PTC) is a per-kilowatt-hour tax credit for electricity generated by qualified energy resources and sold by the taxpayer to an unrelated person during the taxable year. Originally enacted in 1992, the PTC has been renewed and expanded numerous times, most recently by <u>H.R. 1424 (Div. B, Sec. 101 & 102)</u> in October 2008 and again by <u>H.R. 1 (Div. B, Section 1101 & 1102)</u> in February 2009.

The October 2008 legislation extended the in-service deadlines for all qualifying renewable technologies; expanded the list of qualifying resources to include marine and hydrokinetic resources, such as wave, tidal, current and ocean thermal; and made changes to the definitions of several qualifying resources and facilities. The effective dates of these changes vary. Marine and hydrokinetic energy production is eligible as of the date the legislation was enacted (October 3, 2008), as is the incremental energy production associated with expansions of biomass facilities. A change in the definition of "trash facility" no longer requires that such facilities burn trash, and is also effective immediately. One further provision redefining the term "non-hydroelectric dam," took effect December 31, 2008.

The February 2009 legislation revised the credit by: (1) extending the in-service deadline for most eligible technologies by three years (two years for marine and hydrokinetic resources); and (2) allowing facilities that qualify for the PTC to opt instead to take the federal business energy investment credit (ITC) or an equivalent cash grant from the U.S. Department of Treasury. The ITC or grant for PTC-eligible technologies is generally equal to 30% of eligible costs.*

The tax credit amount is 1.5¢/kWh in 1993 dollars (indexed for inflation) for some technologies, and half of that amount for others. The rules governing the PTC vary by resource and facility type. The table below outlines two of the most important characteristics of the tax credit -- in-service deadline and credit amount -- as they apply to different facilities. The table includes changes made by H.R. 1, in February 2009, and the inflation-adjusted credit amounts are current for the 2008 tax year. (See the history section below for information on prior rules.)

Resource Type	In-Service Deadline	Credit Amount
Wind	December 31, 2012	2.1¢/kWh
Closed-Loop Biomass	December 31, 2013	2.1¢/kWh
		וריייו

Open-Loop Biomass	December 31, 2013	1.0¢/kWh
Geothermal Energy	December 31, 2013	2.1¢/kWh
Landfill Gas	December 31, 2013	1.0¢/kWh
Municipal Solid Waste	December 31, 2013	1.0¢/kWh
Qualified Hydroelectric	December 31, 2013	1.0¢/kWh
Marine and Hydrokinetic (150 kW or larger)**	December 31, 2013	1.0¢/kWh

The duration of the credit is generally 10 years after the date the facility is placed in service, but there are two exceptions:

- Open-loop biomass, geothermal, small irrigation hydro, landfill gas and municipal solid waste combustion facilities placed into service after October 22, 2004, and before enactment of the *Energy Policy Act of 2005*, on August 8, 2005, are only eligible for the credit for a five-year period.
- Open-loop biomass facilities placed in service before October 22, 2004, are eligible for a five-year period beginning January 1, 2005.

In addition, the tax credit is reduced for projects that receive other federal tax credits, grants, tax-exempt financing, or subsidized energy financing. The credit is claimed by completing <u>Form 8835</u>, "Renewable Electricity Production Credit," and <u>Form 3800</u>, "General Business Credit." For more information, contact IRS Telephone Assistance for Businesses at 1-800-829-4933.

History

As originally enacted by the *Energy Policy Act of 1992*, the PTC expired at the end of 2001, and was subsequently extended in March 2002 as part of the *Job Creation and Worker Assistance Act of 2002* (H.R. 3090). The PTC then expired at the end of 2003 and was not renewed until October 2004, as part of H.R. 1308, the *Working Families Tax Relief Act of 2004*, which extended the credit through December 31, 2005. The *Energy Policy Act of 2005* (H.R. 6) modified the credit and extended it through December 31, 2007. In December 2006, the PTC was extended for yet another year -- through December 31, 2008 -- by the *Tax Relief and Health Care Act of 2006* (H.R. 6111).

The American Jobs Creation Act of 2004 (H.R. 4520), expanded the PTC to include additional eligible resources -- geothermal energy, open-loop biomass, solar energy, small irrigation power, landfill gas and municipal solid waste combustion -- in addition to the formerly eligible wind energy, closed-loop biomass, and poultry-waste energy resources. The *Energy Policy Act of 2005* (EPAct 2005) further expanded the credit to certain hydropower facilities. As a result of EPAct 2005, solar facilities placed into service after December 31, 2005, are no longer eligible for this incentive. Solar facilities placed in-service during the roughly one-year window in which solar was eligible are permitted to take the full credit (i.e., 2.1¢/kWh) for five years.

* Prior to H.R. 1, geothermal facilities were already eligible for a 10% tax credit under the energy ITC. It is not clear at this time if geothermal electric facilities will be eligible for a 10% tax credit, as defined by the ITC rules, or the full 30% tax credit now available for PTC eligible technologies in general.

** H.R. 1424 added marine and hydrokinetic energy as eligible resources and removed "small irrigation power" as an eligible resource effective October 3, 2008. However, the definition of marine and hydrokinetic energy encompasses the resources that would have formerly been defined as small irrigation power facilities. Thus H.R. 1424 effectively extended the in-service deadline for small irrigation power facilities by 3 years, from the end of 2008 until the end of 2011 (since extended again through 2013).

Contact:

Public Information - IRS U.S. Internal Revenue Service 1111 Constitution Avenue, N.W. Washington, DC 20224 Phone: (800) 829-1040 Web Site: http://www.irs.gov

APPENDIX F Sources

BIBLIOGRAPHY TURBINE FEASIBILITY/ SITING EVALUATION REPORTS

SOFTWARE:

- (1) RETScreen[®] International Clean Energy Project Analysis Software; Version 3.2
- (2) $Google^{TM} Earth@2006$

WIND TURBINE PRODUCT BROCHURES:

- (3) Vestas V-82 1.65 megawatt Vestas Wind Systems A/S Alsvej 21 8900 Randers Denmark Tel. +45 97 30 00 00 Fax +45 97 30 00 01 vestas@vestas.com www.vestas.com
- (4) AAER A-1500 kW & A-1650 wind turbine AAER Wind Energy[™] AAER USA 4801 Woodway Drive Suite 300 East Houston, Texas 77056 Tel.: (866) -448 -5155 Fax: (866)-265-1045 info@aaer.ca www.aaer.ca
- (5) Gamesa G80 Wind Turbine Gamesa Corporación Tecnológica S.A. Ramón y Cajal 7-9 01007 Vitoria, Álava Call Center: 902734949 (España) Call Center: (+34) 944037352 (Calls from outside Spain)

MAPS:

- (6) TrueWind Solutions. Wind Power Map of New England Predicted Power Density at a Height of 50 meters Above Surface. http://www.mtcp.org/
- (7) AWS Truewind, LLC. AWS Truewind. www.awstruewind.com

BIBLIOGRAPHY TURBINE FEASIBILITY/ SITING EVALUATION REPORTS

FUNDING, INCENTIVES, AND FINANCING

- (8) Massachusetts Technology Collaborative.
 75 North Drive Westborough, MA 01581 Phone: (508) 870-0312 Fax: (508) 898-2275
 © 1995 - 2008 Massachusetts Technology Collaborative mtc@masstech.org
- (9) AMERICAN WIND ENERGY ASSOCIATION® 1501 M Street, NW, Suite 1000 Washington, DC 20005 Phone: 202.383.2500 Fax: 202.383.2505 <u>windmail@awea.org</u> Copyright 1996 - 2008 American Wind Energy Association. All Rights Reserved
- U.S Department of Energy Energy Efficiency and Renewable Energy 1000 Independence Ave., SW Washington, DC 20585 1-800-dial-DOE | f/202-586-4403 www.energy.gov